scholarly journals Biophotocatalytic Reduction of CO2 in Anaerobic Biogas Produced from Wastewater Treatment Using an Integrated System

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents the bio-photocatalytic upgrading of biogas utilising carbon dioxide (CO2) as a potential option for beginning fossil fuel depletion and the associated environmental risks in the pursuit of sustainable development. Herein, magnetite photocatalyst (Fe-TiO2) was employed with an integrated anaerobic-photomagnetic system for the decontamination of municipality wastewater for biogas production. The Fe-TiO2 photocatalyst used, manufactured via a co-precipitation technique, had a specific surface area of 62.73 m2/g, micropore volume of 0.017 cm3/g and pore size of 1.337 nm. The results showed that using the ultraviolet-visible (UV-Vis) photomagnetic system as a post-treatment to the anaerobic digestion (AD) process was very effective with over 85% reduction in colour, chemical oxygen demand (COD) and turbidity. With an organic loading rate (OLR) of 0.394 kg COD/L·d and hydraulic retention time (HTR) of 21 days, a 92% degradation of the organic content (1.64 kgCOD/L) was attained. This maximised the bioenergy production to 5.52 kWh/m3 with over 10% excess energy to offset the energy demand of the UV-Vis lamp. Assuming 33% of the bioenergy produced was used as electricity to power the UV-Vis lamp, the CO2 emission reduction was 1.74 kg CO2 e/m3, with good potential for environmental conservation.

2015 ◽  
Vol 73 (3) ◽  
pp. 597-606 ◽  
Author(s):  
Nguyen Thi Tuyet ◽  
Nguyen Phuoc Dan ◽  
Nguyen Cong Vu ◽  
Nguyen Le Hoang Trung ◽  
Bui Xuan Thanh ◽  
...  

This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m3.d. The volumetric biogas production of the digester was 1.94 ± 0.34 m3/m3.d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.


2020 ◽  
Vol 15 (3) ◽  
pp. 683-696
Author(s):  
Vaileth Hance ◽  
Thomas Kivevele ◽  
Karoli Nicholas Njau

Abstract The energy demand, which is expected to increase more worldwide, has sparked the interest of researchers to find sustainable and inexpensive sources of energy. This study aims to integrate an energy recovering step into municipal wastewater treatment plants (MWWTPS) through anaerobic digestion. The anaerobic digestion of municipal wastewater (MWW), and then co-digestion with sugar cane molasses (SCM) to improve its organic content, was conducted at 25 °C and 37 °C. The results showed a substrate mixture containing 6% of SCM and total solids (TS) of 7.52% yielded a higher amount of biogas (9.73 L/L of modified substrate). However, chemical oxygen demand (COD) of the resulting digestate was high (10.1 g/L) and pH was not stable, and hence needed careful adjustment using 2 M of NaOH solution. This study recommends a substrate mixture containing SCM (2%) and TS (4.34%) having biogas production (4.97 L/L of modified substrate) for energy recovery from MWWTPS, since it was found to have more stable pH and low COD residue (1.8 g/L), which will not hold back the MWW treatment process. The annual generation of modified substrate (662,973 m3) is anticipated to generate about 16,241 m3 of methane, which produces up to 1.8 GWh and 8,193 GJ per annum.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Kang ◽  
Xiyu Cui ◽  
Yanrui Cui ◽  
Linlin Bao ◽  
Kaili Ma

Abstract The discharge of wastewater containing both high salinity and high organic content without prior treatment is detrimental to aquatic life and water hygiene. In order to integrate the advantages of membrane treatment and biological treatment, and exert the phosphorus removal efficiency of dewatered alum sludge, in this study, an aerobic membrane reactor based on dehydrated alum sludge was used to treat mustard tuber wastewater with salinity of 6.8-7.3 % under the conditions of 30 °C, 20 kPa trans-membrane pressure (TMP) and chemical oxygen demand (COD) of 3300-3900 mg/L. Three replicate reactors were applied to assess the operational performance under different organic loading rate (OLR). The results showed that all reactors were effective in removing COD, ammonia nitrogen (NH4 +-N) and soluble phosphate (SP) under the conditions of 30 °C and 20 kPa of TMP. Meanwhile, the effluent concentration of COD, NH4 +-N and SP all increased while OLR was changed from 1.0 to 3.0 kg COD/m3/day, and the effluent COD and NH4 +-N concentration except for SP could reach the B-level of Chinese “Wastewater quality standards for discharge to municipal sewers” when OLR was less than 3.0 kg COD/m3/day. This indicates that dewatered alum sludge-based aerobic membrane reactor is a promising bio-measure for treating high salinity wastewater.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2020 ◽  
Author(s):  
Sohail Khan ◽  
Fuzhi Lu ◽  
Qiong Jiang ◽  
Chengjian Jiang ◽  
Muhammad Kashif ◽  
...  

Abstract Background Molasses is a highly dense and refined byproduct produced in the sugarcane industry, and it contains high amounts of degradable compounds. These compounds can potentially be converted into renewable products biologically. However, the involved biological process is negatively influenced by the high chemical oxygen demand (COD) of molasses and its high ion concentration, although this problem is commonly addressed by dilutions. Results The co-digestion of molasses with rice alcohol waste water (RAW) was compared with its mono-digestion at an increasing organic loading rate (OLR). Both processes were assessed by detecting the COD removal rate, the methane contents of biogas, and the structure and composition of microbial communities at different stages. Results showed that the co-digestion is stable up to a maximum OLR of 16 g COD L− 1d− 1. By contrast, after the acclimatization phase, the mono-digestion process was upset twice, which occurred at a maximum OLR of 9 and 10 g COD L− 1d− 1. The co-digestion procgess demonstrated consistency in terms of COD removal rates (86.36% ± 0.99–90.72% ± 0.63%) and methane contents (58.10% ± 1.12–64.47% ± 0.59%) compared with the mono-digestion process. Microbial community analysis showed that the relative abundance of bacterial and archaeal communities differs between the processes at different stages. However, in both processes, Propionibacteriaceae was the most abundant family in the bacterial communities, whereas Methanosaetaceae was abundant in the archaeal communities. Conclusion Rice alcohol wastewater could be a good co-substrate for anaerobic digestion of molasses. Integrate molasses into progressive biogas production at high OLR.


2016 ◽  
Vol 14 (6) ◽  
pp. 1241-1254 ◽  
Author(s):  
Ousman R. Dibaba ◽  
Sandip K. Lahiri ◽  
Stephan T’Jonck ◽  
Abhishek Dutta

Abstract A pilot scale Upflow Anaerobic Contactor (UAC), based on upflow sludge blanket principle, was designed to treat vinasse waste obtained from beet molasses fermentation. An assessment of the anaerobic digestion of vinasse was carried out for the production of biogas as a source of energy. Average Organic loading rate (OLR) was around 7.5 gCOD/m3/day in steady state, increasing upto 8.1 gCOD/m3/day. The anaerobic digestion was conducted at mesophilic (30–37 °C) temperature and a stable operating condition was achieved after 81 days with average production of 65 % methane which corresponded to a maximum biogas production of 85 l/day. The optimal performance of UAC was obtained at 87 % COD removal, which corresponded to a hydraulic retention time of 16.67 days. The biogas production increased gradually with OLR, corresponding to a maximum 6.54 gCOD/m3/day (7.4 % increase from initial target). A coupled Artificial Neural Network-Differential Evolution (ANN-DE) methodology was formulated to predict chemical oxygen demand (COD), total suspended solids (TSS) and volatile fatty acids (VFA) of the effluent along with the biogas production. The method incorporated a DE approach for the efficient tuning of ANN meta-parameters such as number of nodes in hidden layer, input and output activation function and learning rate. The model prediction indicated that it can learn the nonlinear complex relationship between the parameters and able to predict the output of the contactor with reasonable accuracy. The utilization of the coupled ANN-DE model provided significant improvement to the study and helps to study the parametric effect of influential parameters on the reactor output.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 416
Author(s):  
Chatree Wattanasilp ◽  
Roongrojana Songprakorp ◽  
Annop Nopharatana ◽  
Charoenchai Khompatraporn

This paper applied the optimization model of the biogas utilization pathway with the biogas utilization availability assessment to examine the effect of biogas system parameters on biogas utilization. The model analyzes the biogas utilization pathway availability and maximum profit to value added and productivity in biogas from industry wastewater in Thailand. The results showed that profit and availability of biogas utilization reduce biogas loss to flare, that it entails several conversion processes. The scenario for the biogas utilization pathway and storage with biogas production technology improves. Evaluated are operation time, waste and energy demand to the cassava starch usage during the production for 50–1000 tons per day. Five mature biogas production technologies were benchmarked evaluated based on the chemical oxygen demand removal efficiency and biogas yields. Subsequently, low-, medium-, and high-pressure storages and a battery storage were considered and discussed in this paper as suitable energy storage for each desired biogas plant operation. Five biogas utilization pathways, including converting biogas into thermal energy, generating electricity, and upgrading biogas to compressed biogas, were then compared. Those improved options in the scenario select suitable biogas technologies, storage, and application for value-added, reduce the environmental problems and renewable energy production from wastewater.


Author(s):  
Md. Nurul Islam Siddique ◽  
Zularisham A. Wahid

The effect of gradual increase in organic loading rate (0LR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance measured at hydraulic retention time (HRT) of4 to 2d, and start up procedure of the reactor was monitoredfor 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 “C Thermophilic condition was attained, and pH was adjusted at 7 i 0.5. Supreme COD removal competence was 98i0.5% (r = 0.84) at an 0LR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 C with high COD removal efficiency and biogas production. An 0LR of 7.5 g-COD/L d and HRT of 4 days were apposite forpetrochemical wastewater treatment.


2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Darin Phukingngam ◽  
Orathai Chavalparit ◽  
Dararat Somchai ◽  
Maneerat Ongwandee

AbstractBiodiesel-processing factories employing the alkali-catalyzed transesterification process generate a large amount of wastewater containing high amount of methanol, glycerol, and oil. As such, wastewater has high potential to produce biogas using anaerobic treatment. The aim of this research was to investigate the performance of an anaerobic baffled reactor for organic removal and biogas production from biodiesel wastewater. The effect of different organic loading rates, varying from 0.5 kg m−3 d−1 to 3.0 kg m−3 d−1 of chemical oxygen demand, was determined using three 22 L reactors, each comprising five separate compartments. Wastewater was pretreated with chemical coagulants to partially remove oil prior to experimentation. Results show that the anaerobic baffled reactor operated at 1.5 kg m−3 d−1 of chemical oxygen demand and ten days of hydraulic retention time provided the best removal efficiencies of 99 % of chemical oxygen demand, 100 % of methanol, and 100 % of glycerol. Increasing the organic loading rate over 1.5 kg m−3 d−1 of chemical oxygen demand led to excessive accumulation of volatile fatty acids thereby making the pH drop to a value unfavorable for methanogenesis. The biogas production rate was 12 L d−1 and the methane composition accounted for 64–74 %. Phase-separated characteristics revealed that the highest chemical oxygen demand removal percentage was achieved in the first compartment and the removal efficiency gradually decreased longitudinally. A scanning electron microscopic study indicated that the most predominant group of microorganisms residing on the external surface of the granular sludge was Methanosarcina.


Sign in / Sign up

Export Citation Format

Share Document