scholarly journals Contribution of the CK2 Catalytic Isoforms α and α’ to the Glycolytic Phenotype of Tumor Cells

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Francesca Zonta ◽  
Christian Borgo ◽  
Camila Paz Quezada Meza ◽  
Ionica Masgras ◽  
Andrea Rasola ◽  
...  

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.

2020 ◽  
Vol 28 (3) ◽  
pp. 399-405
Author(s):  
Fabrizio Fontana ◽  
Olga A. Babenko

Aim of this letter is to attract the attention of journal readers to the study of exosomes as an important direction in the development of Oncology, in particular, in the diagnosis and treatment of prostate cancer. Exosomes are produced by tumor cells and regulate proliferation, metastasis, and the development of chemoresistance. Their extraction from biological fluids allows further use of these vesicles as potential biomarkers of prostate cancer. In the future, exosomes can be successfully used in the delivery of drugs and other anti-tumor substances to cancer cells.


2021 ◽  
Vol 13 (1) ◽  
pp. 17-29
Author(s):  
Emann M Rabie ◽  
Sherry X Zhang ◽  
Andreas P Kourouklis ◽  
A Nihan Kilinc ◽  
Allison K Simi ◽  
...  

Abstract Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oleg Shuvalov ◽  
Alyona Kizenko ◽  
Alexey Petukhov ◽  
Olga Fedorova ◽  
Alexandra Daks ◽  
...  

AbstractCancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male’s reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2001 ◽  
pp. 651-658 ◽  
Author(s):  
C Grundker ◽  
L Schlotawa ◽  
V Viereck ◽  
G Emons

OBJECTIVE: The expression of luteinizing hormone-releasing hormone (LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumours, including cancers of the endometrium. The signalling pathway through which LHRH acts in endometrial cancer is distinct from that in pituitary gonadotrophs. The LHRH receptor interacts with the mitogenic signal transduction of growth factor receptors via activation of a phosphotyrosine phosphatase, resulting in down-regulation of cancer cell proliferation. In addition, LHRH activates nucleus factor kappaB (NFkappaB) and protects the cancer cells from apoptosis. This study was conducted to investigate additional signalling mechanisms of the LHRH receptor cooperating with NFkappaB in endometrial cancer cells. DESIGN: The LHRH agonist triptorelin-induced activator protein-1 (AP-1) activation was analysed using a pAP-1-SEAP reporter gene assay. Expression of c-jun mRNA was quantified using quantitative reverse transcription (RT)-PCR. c-Jun N-terminal kinase (JNK) activity was measured by quantification of phosphorylated c-Jun protein. RESULTS: Treatment of Ishikawa and Hec-1A human endometrial cancer cells with 100 nM triptorelin resulted in a 3.1-fold and 3.5-fold activation of AP-1 respectively (P<0.05). If the cells had been made quiescent, treatment with triptorelin (100 nM) resulted in a 41.7-fold and 48.6-fold increase of AP-1 activation respectively (P<0.001). This effect was completely blocked by simultaneous treatment with pertussis toxin (PTX). A 17.6-fold and 17.3-fold increase of c-jun mRNA expression respectively (P<0.001) was obtained after 20 min of stimulation with triptorelin (100 nM). Treatment with 1 nM triptorelin resulted in a 12.5-fold or an 11.9-fold increase, and treatment with 10 pM triptorelin resulted in a 6.5-fold or a 5.2-fold increase of maximal c-jun mRNA expression respectively (P<0.001). Maximal c-Jun phosphorylation (68.5-fold and 60.2-fold, respectively, P<0.001) was obtained after 90 min incubation with triptorelin (100 nM). CONCLUSIONS: These results suggest that the LHRH agonist triptorelin stimulates the activity of AP-1 in human endometrial cancer cells mediated through PTX-sensitive G-protein alphai. In addition, triptorelin activates JNK, known to activate AP-1. In earlier investigations we have shown that triptorelin does not activate phospholipase and protein kinase C (PKC) in endometrial cancer cells. In addition, it has been demonstrated that triptorelin inhibits growth factor-induced mitogen activated protein kinase (MAPK, ERK) activity. Thus triptorelin-induced activation of the JNK/AP-1 pathway in endometrial cancer cells is independent of the known AP-1 activators, PKC or MAPK (ERK).


2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Ying Zhu ◽  
Tingting Li ◽  
Suzane Ramos da Silva ◽  
Jae-Jin Lee ◽  
Chun Lu ◽  
...  

ABSTRACT While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV) accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2), glutamate dehydrogenase 1 (GLUD1), and glutamic-oxaloacetic transaminase 2 (GOT2), to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway. IMPORTANCE We have previously found that Kaposi’s sarcoma-associated herpesvirus (KSHV) can efficiently infect and transform primary mesenchymal stem cells; however, the metabolic pathways supporting the anabolic proliferation of KSHV-transformed cells remain unknown. Glutamine and asparagine are essential for supporting the growth, proliferation, and survival of some cancer cells. In this study, we have found that KSHV accelerates glutamine metabolism by upregulating numerous critical metabolic enzymes. Unlike most cancer cells that primarily utilize glutamine and asparagine to replenish the TCA cycle, KSHV-transformed cells depend on glutamine and asparagine for providing γ-nitrogen for purine and pyrimidine biosynthesis. We identified four rate-limiting enzymes in this pathway that are essential for the proliferation of KSHV-transformed cells. Our results demonstrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.


Sign in / Sign up

Export Citation Format

Share Document