scholarly journals Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Rabea Schweiger ◽  
Eva Castells ◽  
Luca Da Sois ◽  
Jordi Martínez-Vilalta ◽  
Caroline Müller

Plants show an extraordinary diversity in chemical composition and are characterized by different functional traits. However, relationships between the foliar primary and specialized metabolism in terms of metabolite numbers and composition as well as links with the leaf economics spectrum have rarely been explored. We investigated these relationships in leaves of 20 woody species from the Mediterranean region grown as saplings in a common garden, using a comparative ecometabolomics approach that included (semi-)polar primary and specialized metabolites. Our analyses revealed significant positive correlations between both the numbers and relative composition of primary and specialized metabolites. The leaf metabolomes were highly species-specific but in addition showed some phylogenetic imprints. Moreover, metabolomes of deciduous species were distinct from those of evergreens. Significant relationships were found between the primary metabolome and nitrogen content and carbon/nitrogen ratio, important traits of the leaf economics spectrum, ranging from acquisitive (mostly deciduous) to conservative (evergreen) leaves. A comprehensive understanding of various leaf traits and their coordination in different plant species may facilitate our understanding of plant functioning in ecosystems. Chemodiversity is thereby an important component of biodiversity.

Author(s):  
Adam R Martin ◽  
Marney E Isaac

Abstract Background and Aims Size-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity. Methods We quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions. Key Results Leaf economics traits related to resource acquisition – maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations – declined linearly with plant size. Structural traits – leaf mass, leaf thickness, and leaf mass per unit area (LMA) – and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the ‘resource-conserving’ end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES. Conclusions Our results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.


2021 ◽  
Author(s):  
Han Wang ◽  
I. Colin Prentice ◽  
Ian J. Wright ◽  
Shengchao Qiao ◽  
Xiangtao Xu ◽  
...  

SUMMARYThe worldwide leaf economics spectrum relates leaf lifespan (LL) to leaf dry mass per unit area (LMA)1. By combining three well-supported principles2–4, we show that an isometric relationship between these two quantities maximizes the leaf’s net carbon gain. This theory predicts a spectrum of equally competent LMA-LL combinations in any given environment, and how their optimal ratio varies across environments. By analysing two large, independent leaf-trait datasets for woody species1,5, we provide quantitative empirical support for the predicted dependencies of LL on LMA and environment in evergreen plants, and for the distinct predicted dependencies of LMA on light, temperature, growing-season length and aridity in evergreen and deciduous plants. We thereby resolve the long-standing question of why deciduous LMA tends to increase (with increasing LL) towards the equator, while evergreen LMA and LL decrease6. We also show how the statistical distribution of LMA within communities can be modelled as an outcome of environmental selection on the global pool of species with diverse values of LMA and LL.


2016 ◽  
Vol 3 (7) ◽  
pp. 160276 ◽  
Author(s):  
Hisanori Harayama ◽  
Atsushi Ishida ◽  
Jin Yoshimura

The leaf economics spectrum has given us a fundamental understanding of the species variations in leaf variables. Across plant species, tight correlations among leaf mass per area (LMA), mass-based nitrogen ( N m ) and photosynthetic rate ( A m ) and leaf lifespan have been well known as trade-offs in leaf carbon economy. However, the regional or biome-level correlations may not be necessary to correspond with the global-scale analysis. Here, we show that almost all leaf variables in overwintering evergreen oaks in Japan were relatively well included within the evergreen-broadleaved trees in worldwide temperate forests, but N m was more consistent with that in deciduous broadleaved trees. Contrary to the universal correlations, the correlation between A m and N m among the evergreen oaks was negative and the correlation between A m and LMA disappeared. The unique performance was due to specific nitrogen allocation within leaves, i.e. the evergreen oaks with later leaf maturation had lower N m but higher nitrogen allocation to photosynthetic enzymes within leaves, to enhance carbon gain against the delayed leaf maturation and the shortened photosynthetic period due to cold winters. Our data demonstrate that correlations between leaf variables in a local scale are occasionally different from averaged global-scale datasets, because of the constraints in each biome.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingji Pan ◽  
Ellen Cieraad ◽  
Jean Armstrong ◽  
William Armstrong ◽  
Beverley R. Clarkson ◽  
...  

Abstract The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general show a shift within trait space along the same common slope as observed in non-wetland plants, with lower leaf mass per area, higher leaf nitrogen and phosphorus, faster photosynthetic rates, and shorter leaf life span compared to non-wetland plants. We conclude that wetland plants tend to cluster at the acquisitive end of the LES. The presented global quantifications of the LES in wetland plants enhance our understanding of wetland plant strategies in terms of resources acquisition and allocation, and provide a stepping-stone to developing trait-based approaches for wetland ecology.


2021 ◽  
Author(s):  
Clay J. Morrow ◽  
Samuel J. Jaeger ◽  
Richard L. Lindroth

Abstract Patterns of trait expression within some plant species have recently been shown to follow patterns described by the leaf economics spectrum paradigm. Resistance to herbivores is also expected to covary with leaf economics traits. We selected multiple mature Populus tremuloides genotypes from a common garden to assess whether aspen leaf economics patterns follow those observed among species globally. We also evaluated leaf economics strategies in the context of insect resistance by conducting bioassays to determine the effects of plant traits on preference and performance of Lymantria dispar. We found that: 1) intraspecific trait patterns of P. tremuloides parallel those exhibited by the interspecific leaf economics spectrum, 2) herbivores preferred leaves from genotypes with resource-acquisitive strategies, and 3) herbivores also performed best on genotypes with resource-acquisitive strategies. We conclude that a leaf economics spectrum that incorporates defense traits is a useful tool for explaining intraspecific patterns of variation in plant strategies, including resistance to herbivores.


2021 ◽  
Author(s):  
Kenny Helsen ◽  
Tsung-Yi Lin ◽  
David Zeleny

While functional trait-trait and trait-environment relationships are well studied in angiosperms, it is less clear if similar relationships, such as the leaf economics spectrum (LES), hold for ferns and lycophytes. Similarly, studies exploring potential differences in trait-trait and trait-environment relationships between terrestrial and epiphytic fern communities in a given ecosystem are largely lacking. We measured nine leaf traits for 76 terrestrial and 43 epiphytic fern and lycophyte species across 59 vegetation plots along an elevation gradient in the subtropical forest of Northern Taiwan. We explored trait-trait and trait-environment relationships at both the species- and community level for both species groups. Epiphytes differed from terrestrial ferns and lycophytes in species- and community-level trait values, mainly reflecting responses to higher drought and nutrient stress. The angiosperm LES was reflected in the trait-trait correlations of terrestrial ferns, but not of epiphytes. This suggests that epiphytic trait patterns are mainly shaped by water, rather than nutrient availability. Trait-environment relationships were nonetheless more-or-less similar for several drought-related traits across both species' groups. This study illustrates that ferns and lycophyte trait patterns are not equivalent for epiphytic and terrestrial species or communities, and should not be extrapolated across species groups or between the species- and community-level.


2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


Sign in / Sign up

Export Citation Format

Share Document