scholarly journals Establishment and Characterization of a Novel Gill Cell Line, LG-1, from Atlantic Lumpfish (Cyclopterus lumpus L.)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2442
Author(s):  
Hilde Sindre ◽  
Mona C. Gjessing ◽  
Johanna Hol Fosse ◽  
Lene C. Hermansen ◽  
Inger Böckerman ◽  
...  

The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


1982 ◽  
Vol 156 (2) ◽  
pp. 658-663 ◽  
Author(s):  
G Nabel ◽  
W J Allard ◽  
H Cantor

We previously described a cloned cell line that combines information for a unique display of cell surface antigens and specialized function similar to activated natural killer (NK) cells. In addition to conventional cellular targets such as the YAC-1 and MBL-2 lymphomas, this cloned line also lysed lipopolysaccharide-activated B lymphocytes. To determine whether some NK cells can inhibit B cell function, we tested the ability of NK-like clones to suppress Ig secretion in vitro and in vivo. These cloned cells suppressed Ig secretion when they constituted as few as 0.2% of the total cell population and inhibition did not require identity at the H-2 locus. We suggest that some NK cells might recognize non-major histocompatibility complex gene products on activated B lymphocytes and lyse these cells, and this might represent a fundamental cell-cell interaction that regulates antibody secretion by activated B cells.


2008 ◽  
Vol 1136 ◽  
Author(s):  
Jing Lu ◽  
Dongwoo Khang ◽  
Thomas J. Webster

ABSTRACTTo study the contribution of different surface feature properties in improving vascular endothelial cell adhesion, rationally designed nano/sub-micron patterns with various dimensions were created on titanium surfaces in this study. In vitro results indicated that endothelial cell adhesion was improved when the titanium pattern dimensions decreased into the nano-scale. Specifically, endothelial cells preferred to adhere on sub-micron and nano rough titanium substrates compared to flat titanium. Moreover, titanium with nano and sub-micron roughness and with the same chemistry as compared to flat titanium, had significantly greater surface energy. Thus, the present study indicated the strong potential of surface nanotopography and nano/sub-micron roughness for improving current vascular stent design.


Author(s):  
Kristin Schirmer ◽  
Katrin Tanneberger ◽  
Nynke I. Kramer ◽  
Frans J.M. Busser ◽  
Joop L.M. Hermens ◽  
...  

1991 ◽  
Vol 114 (5) ◽  
pp. 1069-1078 ◽  
Author(s):  
B A Imhof ◽  
P Ruiz ◽  
B Hesse ◽  
R Palacios ◽  
D Dunon

The mouse progenitor T lymphocyte (pro-T) cell line FTF1 binds in vitro to thymus blood vessels, the thymic capsule, and liver from newborn mice. A mAb, EA-1, raised against an embryonic mouse endothelial cell line, blocked adhesion. The antibody also interfered with pro-T cell adhesion to a thymus-derived mouse endothelial cell line; it had no effect on the adhesion of mature T lymphocytes and myeloid cells. The antigen recognized by EA-1 is located on the vascular endothelium of various mouse tissues and absent on pro-T cells. EA-1 antibody precipitates molecules with apparent molecular weights of 110,000, 140,000, 160,000, and 200,000. Immunoclearing and binding-inhibition studies with antibodies against known adhesion molecules suggest that the EA-1 antigen is a novel adhesion molecule involved in colonization of the embryonic thymus by T cell progenitors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 845-845
Author(s):  
Tatiana Byzova ◽  
Juhua Chen ◽  
Payaningal R. Somanath

Abstract The major mechanism to adapt to ischemic conditions is the development of neovascularization, i.e. angiogenesis, a process driven by members of VEGF family of growth factors. Phosphoinositide 3-kinase/Akt pathway is a critical component of the signaling network that regulates endothelial cell function related to angiogenesis. VEGF treatment of endothelial cells results in rapid phosphorylation of Akt. Our studies demonstrated that Akt kinase activity is necessary for VEGF-induced and integrin-mediated endothelial cell adhesion and migration. Moreover, cell transfection with a constitutive active form of Akt (myr-Akt) leads to increased function of integrin receptors. Using Akt-1 null mice we found that Akt-1 controls VEGF-induced and integrin-dependent endothelial cell responses in vitro. Impaired endothelial cell migration and adhesion to extracellular matrix and a reduced rate of cell proliferation were observed in Akt-1 (−/−) endothelial cells compared to WT. There are three Akt isoforms with different tissue distribution, however, it appears that Akt-1 is a predominant isoform in skin and in skin microvasculature. This observation prompted us to perform series of in vivo experiments designed to assess the angiogenic response in skin in the absence of Akt-1. Angiogenesis assay using matrigel plugs revealed that the weight and hemoglobin content of matrigel plugs is about two fold higher in Akt (−/−) mice compared to WT mice. Tumor angiogenesis also appears to be enhanced in Akt(−/−) mice, resulting in the significantly lower degree of tumor necrosis. Blood vessels in Akt (−/−) mice appear to be smaller in diameter and have reduced laminin content. Our analysis revealed significant changes in blood vessel wall matrix composition of Akt (−/−) mice as compared to WT animals. These changes resulted in increased vascular permeability in skin of Akt (−/−) mice. Akt-1 is known to target multiple cellular processes including adhesive properties, cell survival, transcription and translation. It appears that the phenotype of Akt-1 (−/−) mice depends on the equilibrium between pro-angiogenic and anti-angiogenic roles of Akt-1 and reveals a central role for Akt-1 in the regulation of matrix production and maturation of blood vessels.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 302-302
Author(s):  
Jean-Baptiste Micol ◽  
Nicolas Duployez ◽  
Alessandro Pastore ◽  
Robert Williams ◽  
Eunhee Kim ◽  
...  

Abstract Mutations in Addition of Sex Combs Like 1 (ASXL1) are common in patients with myeloid leukemias. More recently, mutations in ASXL2, a paralog of ASXL1 with ~40% shared amino acid homology, have been discovered to occur specifically in patients with acute myeloid leukemia (AML) patients bearing the RUNX1-ETO (AML1-ETO; RUNX1-RUNX1T1) translocation and are amongst the most common mutations in RUNX1-ETO AML (mutated in 20-25% of patients). Although ASXL1 is critical for Polycomb Repressive Complex 2 function in myeloid hematopoietic cells and loss of Asxl1 recapitulates key aspects of myelodysplastic syndrome (MDS), the function of ASXL2 in normal or malignant hematopoiesis is unknown. We therefore set out to perform a functional comparison of ASXL1and ASXL2on hematopoiesis and transcription and determine the functional basis for frequent mutations in RUNX1-ETO AML. In vitro analyses of ASXL2 insertion/deletion mutations revealed that these mutations resulted in substantial reduction of ASXL2 protein expression, stability, and half-life. We therefore generated Asxl2 conditional knockout (cKO) mice to delineate the effect of ASXL2 loss on hematopoiesis. Competitive (Fig. 1A) and noncompetitive transplantation revealed that Asxl2 or compound Asxl1/2 loss resulted in cell-autonomous, rapid defects of hematopoietic stem cell function, self-renewal, and number with peripheral blood leukopenia and thrombocytopenia but without any obvious MDS features- phenotypes distinct from Asxl1 cKO mice. Mice with heterozygous deletion of Asxl2 demonstrated an intermediate phenotype between control and homozygous cKO mice indicating a gene dosage effect of Asxl2 loss. RNA sequencing (RNA-seq) of hematopoietic stem/progenitor cells from Asxl2- and Asxl1-deficient mice revealed twenty-fold greater differentially expressed genes in Asxl2 cKO mice relative to Asxl1 cKO mice. Interestingly, genes differentially expressed with Asxl2 loss significantly overlapped with direct transcriptional targets of RUNX1-ETO, findings not seen in Asxl1 cKO mice (Fig. 1B). Asxl2 target genes appeared to also be targets of RUNX1, a key gene repressed by RUNX1-ETO to promote leukemogenesis. Consistent with this, genome-wide analysis of Asxl2 binding sites through anti-Asxl2 ChIP-seq revealed that Asxl2 binding sites substantially overlap with those of Runx1. Overall, the above data suggest that Asxl2 may be a critical mediator of RUNX1-ETO mediated leukemogenesis by affecting the expression of RUNX1 and/or RUNX1-ETO target genes. RNA-seq of primary RUNX1-ETO AML patient samples revealed that ASXL2-mutant RUNX1-ETO patients form a distinct transcriptional subset of RUNX1-ETO AML (Fig. 1C) suggesting a specific role of ASXL2 in leukemogenesis. To functionally interrogate the role of ASXL2 loss in RUNX1-ETO mediated leukemogenesis we first utilized an in vitro model with RNAi-mediated depletion of ASXL1 or ASXL2 in the SKNO1 cell line (the only ASXL-wildtype human RUNX1-ETO cell line). RNA-seq revealed distinct target genes dysregulated by ASXL1 versus ASXL2 loss in these cells without any significant overlap. Anti-ASXL2, RUNX1, and RUNX1-ETO ChIPSeq in SKNO1 cells revealed significant co-occupancy of ASXL2 with RUNX1 and RUNX1-ETO binding sites. Moreover, analysis of histone modification ChIPSeq revealed an enrichment in intergenic and enhancer H3K4me1 abundance following ASXL2 loss in SKNO1 cells. Next, to understand the in vivo effects of Asxl2 loss in the context of RUNX1-ETO, we performed retroviral bone marrow (BM) transplantation assays using RUNX1-ETO9a in Asxl2 cKO mice. In contrast to the failure of hematopoietic stem cell function with Asxl2 deletion alone, mice reconstituted with BM cells expressing RUNX1-ETO9a in Asxl2-deficient background had a shortened leukemia-free survival compared to Asxl2 -wildtype control. Overall, these data reveal that ASXL2 is required for hematopoiesis and has differing biological and transcriptional functions from ASXL1. Moreover, this work identifies ASXL2 as a novel mediator of RUNX1-ETOtranscriptional function and provides a new model of penetrant RUNX1-ETO AML based on genetic events found in a substantial proportion of t(8;21) AML patients. Further interrogation of the enhancer alterations generated by ASXL2 loss in RUNX1-ETO AML may highlight new therapeutic approaches for this subset of AML. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15648-15648
Author(s):  
G. Bartsch ◽  
K. Eggert ◽  
S. Loges ◽  
W. Fiedler ◽  
E. Laack ◽  
...  

15648 Background: Combinations of cytotoxic drugs lead to increased activity and minimize resistance compared to single agents in tumor therapy. Similarly, antiangiogenic treatment could be improved by combinations targeting different pathways. We investigated a combination of endogenous inhibitors using endostatin (ES), soluble Neuropilin-1 (sNP-1), and thrombospondin-2 (TSP-2) in a model of renal cell carcinoma. Methods: Porcine aortic endothelial cells have been engineered for stable production of angiogenic inhibitors by lipofection and were encapsulated in sodium alginate microbeads. Proliferation of human umbilical vein endothelial cells or Renca renal carcinoma cells was examined after incubation with different microbeads. Similarly, effects of inhibitors on endothelial cell function were tested in tube formation and in vitro wound assays. Microbeads were implanted into SCID mice with subcutaneously growing tumors derived from Renca cells or in mice developing lung metastases after intravenous injection of tumor cells. Results: Factors released from microbeads inhibited endothelial cell function but had no effect on tumor cell proliferation in vitro. In vivo, subcutaneous tumor growth was inhibited similarly by each angiogenic inhibitor alone. After 30 days mean tumor weight was 1.3 g in controls and 0.17, 0.18, 0.18g in ES, sNP-1, and TSP-2 treated mice, respectively. Tumor weight in mice treated with all three inhibitors was further reduced to 0.03g. Histological analyses confirmed antiangiogenic activity by inhibition of microvessel density in treated tumors. In a metastastic model treatment with angiogenic inhibitors induced a significant reduction in size and number of lung metastases with additive effects when factors were used in combination. Conclusions: We conclude that combination therapy targeting multiple angiogenic pathways has synergistic activity and could help to avoid resistance to single inhibitors in tumor treatment. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document