scholarly journals An Autophagy Modulator Peptide Prevents Lung Function Decrease and Corrects Established Inflammation in Murine Models of Airway Allergy

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2468
Author(s):  
François Daubeuf ◽  
Nicolas Schall ◽  
Nathalie Petit-Demoulière ◽  
Nelly Frossard ◽  
Sylviane Muller

The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes. In contrast, its expression was decreased in the neutrophils recovered from the bronchoalveolar fluid, indicating that autophagy was independently regulated in these two compartments. In a strategy of drug repositioning, we treated allergen-sensitized mice with the therapeutic peptide P140 known to target chaperone-mediated autophagy. A single intravenous administration of P140 in these mice resulted in a significant reduction in airway resistance and elastance, and a reduction in the number of neutrophils and eosinophils present in the bronchoalveolar fluid. It corrected the autophagic alteration without showing any suppressive effect in the production of IgG1 and IgE. Collectively, these findings show that autophagy processes are altered in allergic airway inflammation. This cellular pathway may represent a potential therapeutic target for treating selected patients with asthma.

2020 ◽  
Vol 204 (4) ◽  
pp. 753-762 ◽  
Author(s):  
Haruka Miki ◽  
Satoko Tahara-Hanaoka ◽  
Mariana Silva Almeida ◽  
Kaori Hitomi ◽  
Shohei Shibagaki ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Hsu-Chung Liu ◽  
Shun-Yuan Pai ◽  
Winston TK Cheng ◽  
Hsiao-Ling Chen ◽  
Tung-Chou Tsai ◽  
...  

2017 ◽  
Vol 214 (10) ◽  
pp. 3037-3050 ◽  
Author(s):  
Takashi Ito ◽  
Koichi Hirose ◽  
Aiko Saku ◽  
Kenta Kono ◽  
Hiroaki Takatori ◽  
...  

Previous studies have shown that IL-22, one of the Th17 cell–related cytokines, plays multiple roles in regulating allergic airway inflammation caused by antigen-specific Th2 cells; however, the underlying mechanism remains unclear. Here, we show that allergic airway inflammation and Th2 and Th17 cytokine production upon intratracheal administration of house dust mite (HDM) extract, a representative allergen, were exacerbated in IL-22-deficient mice. We also found that IL-22 induces Reg3γ production from lung epithelial cells through STAT3 activation and that neutralization of Reg3γ significantly exacerbates HDM-induced eosinophilic airway inflammation and Th2 cytokine induction. Moreover, exostatin-like 3 (EXTL3), a functional Reg3γ binding protein, is expressed in lung epithelial cells, and intratracheal administration of recombinant Reg3γ suppresses HDM-induced thymic stromal lymphopoietin and IL-33 expression and accumulation of type 2 innate lymphoid cells in the lung. Collectively, these results suggest that IL-22 induces Reg3γ production from lung epithelial cells and inhibits the development of HDM-induced allergic airway inflammation, possibly by inhibiting cytokine production from lung epithelial cells.


2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Go Kato ◽  
Koichiro Takahashi ◽  
Hiroki Tashiro ◽  
Keigo Kurata ◽  
Hideharu Shirai ◽  
...  

2018 ◽  
Vol 104 (3) ◽  
pp. 447-459 ◽  
Author(s):  
Madelyn H. Miller ◽  
Michael G. Shehat ◽  
Karel P. Alcedo ◽  
Lina P. Spinel ◽  
Julia Soulakova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document