scholarly journals Bile Acid Receptors and the Gut–Liver Axis in Nonalcoholic Fatty Liver Disease

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2806
Author(s):  
Rui Xue ◽  
Lianyong Su ◽  
Shengyi Lai ◽  
Yanyan Wang ◽  
Derrick Zhao ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been significantly increased due to the global epidemic of obesity. The disease progression from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is closely linked to inflammation, insulin resistance, and dysbiosis. Although extensive efforts have been aimed at elucidating the pathological mechanisms of NAFLD disease progression, current understanding remains incomplete, and no effective therapy is available. Bile acids (BAs) are not only important physiological detergents for the absorption of lipid-soluble nutrients in the intestine but also metabolic regulators. During the last two decades, BAs have been identified as important signaling molecules involved in lipid, glucose, and energy metabolism. Dysregulation of BA homeostasis has been associated with NAFLD disease severity. Identification of nuclear receptors and G-protein-coupled receptors activated by different BAs not only significantly expanded the current understanding of NAFLD/NASH disease progression but also provided the opportunity to develop potential therapeutics for NAFLD/NASH. In this review, we will summarize the recent studies with a focus on BA-mediated signaling pathways in NAFLD/NASH. Furthermore, the therapeutic implications of targeting BA-mediated signaling pathways for NAFLD will also be discussed.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1894-P
Author(s):  
JIANDI CHEN ◽  
JIANXU CHEN ◽  
HUIRONG FU ◽  
YUN LI ◽  
SHUNKUI LUO ◽  
...  

2019 ◽  
Vol 39 (03) ◽  
pp. 291-300 ◽  
Author(s):  
Hannelie Korf ◽  
Markus Boesch ◽  
Lore Meelberghs ◽  
Schalk van der Merwe

AbstractNonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries that could lead to serious health problems including liver failure, cancer, or death. The term NAFLD includes a spectrum of disease states with histological features ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). A key aspect within this research field is the identification of pathogenic factors that trigger inflammation, thus fueling the transition from nonalcoholic fatty liver to NASH. These inflammatory triggers may originate from within the liver as a result of innate immune cell activation and/or hepatocyte injury. Additionally, they may originate from other sites such as adipose tissue or the intestinal tract. In the current review, the authors will primarily focus on events within adipose tissue which may be of importance in triggering the disease progression. They specifically focus on the role of adipose tissue macrophages during NAFLD pathogenesis and how microenvironmental factors may shape their metabolic profile. They further dissect how redirecting the macrophage's metabolic profile alters their immunological functions. Finally, they discuss the opportunities and challenges of targeting macrophages to interfere in disease progression.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yaxing Zhang ◽  
Ge Zhou ◽  
Zifeng Chen ◽  
Weibing Guan ◽  
Jiongshan Zhang ◽  
...  

Background. Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods. Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results. Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions. Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD.


2012 ◽  
Vol 11 (4) ◽  
pp. 2521-2532 ◽  
Author(s):  
J. Barr ◽  
J. Caballería ◽  
I. Martínez-Arranz ◽  
A. Domínguez-Díez ◽  
C. Alonso ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Aaron M. Gusdon ◽  
Ke-xiu Song ◽  
Shen Qu

Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.


Sign in / Sign up

Export Citation Format

Share Document