scholarly journals Up-Regulation of Fibroblast Growth Factor 23 Gene Expression in UMR106 Osteoblast-like Cells with Reduced Viability

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Sina Münz ◽  
Martina Feger ◽  
Bayram Edemir ◽  
Michael Föller

Fibroblast growth factor 23 (FGF23) controls vitamin D and phosphate homeostasis in the kidney and has additional paracrine effects elsewhere. As a biomarker, its plasma concentration is associated with progression of inflammatory, renal, and cardiovascular diseases. Major stimuli of FGF23 synthesis include active vitamin D and inflammation. Antineoplastic chemotherapy treats cancer by inducing cellular damage ultimately favoring cell death (apoptosis and necrosis) and causing inflammation. Our study explored whether chemotherapeutics and other apoptosis inducers impact on Fgf23 expression. Experiments were performed in osteoblast-like UMR106 cells, Fgf23 gene expression and protein synthesis were determined by qRT-PCR and ELISA, respectively. Viability was assessed by MTT assay and NFκB activity by Western Blotting. Antineoplastic drugs cisplatin and doxorubicin as well as apoptosis inducers procaspase-activating compound 1 (PAC-1), a caspase 3 activator, and serum depletion up-regulated Fgf23 transcripts while reducing cell proliferation and viability. The effect of cisplatin on Fgf23 transcription was paralleled by Il-6 up-regulation and NFκB activation and attenuated by Il-6 and NFκB signaling inhibitors. To conclude, cell viability-decreasing chemotherapeutics as well as apoptosis stimulants PAC-1 and serum depletion up-regulate Fgf23 gene expression. At least in part, Il-6 and NFκB may contribute to this effect.

2007 ◽  
Vol 293 (5) ◽  
pp. F1577-F1583 ◽  
Author(s):  
Farzana Perwad ◽  
Martin Y. H. Zhang ◽  
Harriet S. Tenenhouse ◽  
Anthony A. Portale

Fibroblast growth factor-23 (FGF-23) is critical to the pathogenesis of a distinct group of renal phosphate wasting disorders: tumor-induced osteomalacia, X-linked hypophosphatemia, and autosomal dominant and autosomal recessive hypophosphatemic rickets. Excess circulating FGF-23 is responsible for their major phenotypic features which include hypophosphatemia due to renal phosphate wasting and inappropriately low serum 1,25(OH)2D concentrations. To characterize the effects of FGF-23 on renal sodium-phosphate (Na/Pi) cotransport and vitamin D metabolism, we administered FGF-23(R176Q) to normal mice. A single injection (0.33 μg/g body wt) induced significant hypophosphatemia, 20 and 29% decreases ( P < 0.001) in brush-border membrane (BBM) Na/Pi cotransport at 5 and 17 h after injection, respectively, and comparable decreases in the abundance of type IIa Na/Pi cotransporter protein in BBM. Multiple injections (6, 12, and 24 μg/day for 4 days) induced dose-dependent decreases (38, 63, and 75%, respectively) in renal abundance of 1α-hydroxylase mRNA ( P < 0.05). To determine whether FGF-23(R176Q) exerts a direct action on 1α-hydroxylase gene expression, we examined its effects in cultured human (HKC-8) and mouse (MCT) renal proximal tubule cells. FGF-23(R176Q) (1 to 10 ng/ml) induced a dose-dependent decrease in 1α-hydroxylase mRNA with a maximum suppression of 37% ( P < 0.05). Suppression was detectable after 6 h of exposure and maximal after 21 h. In MCT cells, FGF-23(R176Q) suppressed 1α-hydroxylase mRNA and activated the ERK1/2 signaling pathway. The MAPK inhibitor PD98059 effectively abolished FGF-23-induced suppression of 1α-hydroxylase mRNA by blocking signal transduction via ERK1/2. These novel findings provide evidence that FGF-23 directly regulates renal 1α-hydroxylase gene expression via activation of the ERK1/2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document