scholarly journals Adipocyte Utx Deficiency Promotes High-Fat Diet-Induced Metabolic Dysfunction in Mice

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Fenfen Li ◽  
Shirong Wang ◽  
Xin Cui ◽  
Jia Jing ◽  
Liqing Yu ◽  
...  

While the main function of white adipose tissue (WAT) is to store surplus of energy as triacylglycerol, that of brown adipose tissue (BAT) is to burn energy as heat. Epigenetic mechanisms participate prominently in both WAT and BAT energy metabolism. We previously reported that the histone demethylase ubiquitously transcribed tetratricopeptide (Utx) is a positive regulator of brown adipocyte thermogenesis. Here, we aimed to investigate whether Utx also regulates WAT metabolism in vivo. We generated a mouse model with Utx deficiency in adipocytes (AUTXKO). AUTXKO animals fed a chow diet had higher body weight, more fat mass and impaired glucose tolerance. AUTXKO mice also exhibited cold intolerance with an impaired brown fat thermogenic program. When challenged with high-fat diet (HFD), AUTXKO mice displayed adipose dysfunction featured by suppressed lipogenic pathways, exacerbated inflammation and fibrosis with less fat storage in adipose tissues and more lipid storage in the liver; as a result, AUTXKO mice showed a disturbance in whole body glucose homeostasis and hepatic steatosis. Our data demonstrate that Utx deficiency in adipocytes limits adipose tissue expansion under HFD challenge and induces metabolic dysfunction via adipose tissue remodeling. We conclude that adipocyte Utx is a key regulator of systemic metabolic homeostasis.

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 688 ◽  
Author(s):  
Kyoung Soo Kim ◽  
Hari Madhuri Doss ◽  
Hee-Jin Kim ◽  
Hyung-In Yang

This study was conducted to investigate if taurine supplementation stimulates the induction of thermogenic genes in fat tissues and muscles and decipher the mechanism by which taurine exerts its anti-obesity effect in a mildly obese ICR (CD-1®) mouse model. Three groups of ICR mice were fed a normal chow diet, a high-fat diet (HFD), or HFD supplemented with 2% taurine in drinking water for 28 weeks. The expression profiles of various genes were analyzed by real time PCR in interscapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and the quadriceps muscles of the experimental groups. Genes that are known to regulate thermogenesis like PGC-1α, UCP-1, Cox7a1, Cox8b, CIDE-A, and β1-, β2-, and β3-adrenergic receptors (β-ARs) were found to be differentially expressed in the three tissues. These genes were expressed at a very low level in iWAT as compared to BAT and muscle. Whereas, HFD increased the expression of these genes. Taurine supplementation stimulated the expression of UCP-1, Cox7a1, and Cox8b in BAT and only Cox7a1 in muscle, while there was a decrease in iWAT. In contrast, fat deposition-related genes, monoamine oxidases (MAO)-A, and -B, and lipin-1, were decreased by taurine supplementation only in iWAT and not in BAT or muscle. In conclusion, the potential anti-obesity effects of taurine may be partly due to upregulated thermogenesis in BAT, energy metabolism of muscle, and downregulated fat deposition in iWAT.


2012 ◽  
Vol 302 (5) ◽  
pp. E532-E539 ◽  
Author(s):  
Haihong Zong ◽  
Michal Armoni ◽  
Chava Harel ◽  
Eddy Karnieli ◽  
Jeffrey E. Pessin

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.


2019 ◽  
Author(s):  
Lulu Deng ◽  
Zihao Ou ◽  
Dongquan Huang ◽  
Chong Li ◽  
Zhi Lu ◽  
...  

Abstract Background The study aimed to investigate the differences of different Akkermansia muciniphila (A.muciniphila) genotypes on metabolic protective effects in mice with high-fat diet and explore possible mechanisms. Methods Male C57BL/6 mice were randomly divided into 6 groups, including high-fat diet (HFD)+ A.muciniphila I/II/PBS group, normal chow diet (NCD)+A.muciniphila I/ II /PBS group, respectively. Dietary intervention and A.muciniphila gavage were performed simultaneously. Blood glucose and lipid metabolism, brown adipose morphology and activities, and intestinal barrier function were examined after the mice were sacrificed. Results A.muciniphila gavage improved the impaired glucose tolerance, hyperlipidemia and liver steatosis in HFD mice, and that A.muciniphila II was not as effective as A.muciniphila I. This phenomenon might be because A.muciniphila I intervention significantly inhibited brown adipose tissue whitening and inflammation induced by HFD, by repairing the intestinal barrier and relieving endotoxemia. A.muciniphila II did not display the same results as A.muciniphila I in HFD mice, but had stronger effects in the NCD mice. Conclusions This study mainly reveals the distinct functions of different A.muciniphila genotypes on diet-induced obesity, suggesting that different A.muciniphila genotypes may play inequitable roles in pathological conditions through distinct action pathways.


Author(s):  
Peter Aldiss ◽  
Jo Lewis ◽  
David Boocock ◽  
Amanda Miles ◽  
Ian Bloor ◽  
...  

Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical locations and developmental origins and we hypothesised that iBAT and PVAT would respond differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n = 12) were fed either a standard (10% fat, n = 6) or high fat diet (HFD: 45% fat, n = 6) for 72 h and housed at thermoneutrality. Following an assessment of whole body physiology, fat was collected from both depots for analysis of gene expression and the proteome. HFD consumption for 72 h induced rapid weight gain (c. 2.6%) and reduced serum NEFA with no change in either total adipose or depot mass. In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was accompanied by enrichment of lipid-related processes and functions, plus glucagon and PPAR signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g. Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-related processes and functions (e.g., nucleosome assembly and histone exchange) and RNA degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit divergent responses to short-term nutrient excess highlighting early adaptations in these depots before changes in fat mass.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1065 ◽  
Author(s):  
Peter Aldiss ◽  
Jo E. Lewis ◽  
David J. Boocock ◽  
Amanda K. Miles ◽  
Ian Bloor ◽  
...  

Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical locations and developmental origins and we hypothesised that iBAT and PVAT would respond differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n=12) were fed either a standard (10% fat, n=6) or high fat diet (HFD: 45% fat, n=6) for 72h and housed at thermoneutrality. Following an assessment of whole body physiology, fat was collected from both depots for analysis of gene expression and the proteome. HFD consumption for 72h induced rapid weight gain (c. 2.6%) and reduced serum non-esterified fatty acids (NEFA) with no change in either total adipose or depot mass. In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was accompanied by enrichment of lipid-related processes and functions, plus glucagon and peroxisome proliferator-activated receptor (PPAR) signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g., Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-related processes and functions (e.g., nucleosome assembly and histone exchange) and RNA degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit divergent responses to short-term nutrient excess highlighting early adaptations in these depots before changes in fat mass.


2018 ◽  
Vol 19 (9) ◽  
pp. 2622 ◽  
Author(s):  
Jelena Krstic ◽  
Isabel Reinisch ◽  
Michael Schupp ◽  
Tim Schulz ◽  
Andreas Prokesch

As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue- and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53’s impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.


2009 ◽  
Vol 297 (1) ◽  
pp. E184-E193 ◽  
Author(s):  
Josep Mercader ◽  
Joan Ribot ◽  
Incoronata Murano ◽  
Søren Feddersen ◽  
Saverio Cinti ◽  
...  

Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ line haploinsufficiency of the pRb gene (Rb) on the response to high-fat diet feeding in mice. Rb+/− mice had body weight and adiposity indistinguishable from that of wild-type (Rb+/+) littermates when maintained on a standard diet, yet they gained less body weight and body fat after long-term high-fat diet feeding coupled with reduced feed efficiency and increased rectal temperature. Rb haploinsufficiency ameliorated insulin resistance and hepatosteatosis after high-fat diet in male mice, in which these disturbances were more marked than in females. Compared with wild-type littermates, Rb+/− mice fed a high-fat diet displayed higher expression of peroxisome proliferator-activated receptor (PPAR)γ as well as of genes involved in mitochondrial function, cAMP sensitivity, brown adipocyte determination, and tissue vascularization in white adipose tissue depots. Furthermore, Rb+/− mice exhibited signs of enhanced activation of brown adipose tissue and higher expression levels of PPARα in liver and of PPARδ in skeletal muscle, suggestive of an increased capability for fatty acid oxidation in these tissues. These findings support a role for pRb in modulating whole body energy metabolism and the plasticity of the adipose tissues in vivo and constitute first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances.


2018 ◽  
Vol 314 (1) ◽  
pp. E53-E65 ◽  
Author(s):  
Ivan Torre-Villalvazo ◽  
Luz Graciela Cervantes-Pérez ◽  
Lilia G. Noriega ◽  
Jose V. Jiménez ◽  
Norma Uribe ◽  
...  

The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl−]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.


2020 ◽  
Author(s):  
Ruth Karlina ◽  
Dominik Lutter ◽  
Viktorian Miok ◽  
David Fischer ◽  
Irem Altun ◽  
...  

AbstractBrown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. While increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Using single cell RNA sequencing of the stromal vascular fraction of murine BAT and analysis of 67 brown preadipocyte and adipocyte clones we unravel heterogeneity within brown preadipocytes. Statistical analysis of gene expression profiles from these clones identifies markers distinguishing brown adipocyte lineages. We confirm the presence of distinct brown adipocyte populations in vivo using three identified markers; Eif5, Tcf25, and Bin1. Functionally, we demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that Bin1 marks a dormant brown adipocyte type. The existence of multiple brown adipocyte lineages suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct function in thermogenesis and the regulation of whole body energy homeostasis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ya-Nan Duan ◽  
Xiang Ge ◽  
Hao-Wen Jiang ◽  
Hong-Jie Zhang ◽  
Yu Zhao ◽  
...  

Brown adipose tissue (BAT) and beige adipose tissue dissipate metabolic energy and mediate nonshivering thermogenesis, thereby boosting energy expenditure. Increasing the browning of BAT and beige adipose tissue is expected to be a promising strategy for combatting obesity. Through phenotype screening of C3H10-T1/2 mesenchymal stem cells, diphyllin was identified as a promising molecule in promoting brown adipocyte differentiation. In vitro studies revealed that diphyllin promoted C3H10-T1/2 cell and primary brown/beige preadipocyte differentiation and thermogenesis, which resulted increased energy consumption. We synthesized the compound and evaluated its effect on metabolism in vivo. Chronic experiments revealed that mice fed a high-fat diet (HFD) with 100 mg/kg diphyllin had ameliorated oral glucose tolerance and insulin sensitivity and decreased body weight and fat content ratio. Adaptive thermogenesis in HFD-fed mice under cold stimulation and whole-body energy expenditure were augmented after chronic diphyllin treatment. Diphyllin may be involved in regulating the development of brown and beige adipocytes by inhibiting V-ATPase and reducing intracellular autophagy. This study provides new clues for the discovery of anti-obesity molecules from natural products.


Sign in / Sign up

Export Citation Format

Share Document