scholarly journals Signal Amplification in Highly Ordered Networks Is Driven by Geometry

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Éva S. Vanamee ◽  
Gábor Lippner ◽  
Denise L. Faustman

Here, we hypothesize that, in biological systems such as cell surface receptors that relay external signals, clustering leads to substantial improvements in signaling efficiency. Representing cooperative signaling networks as planar graphs and applying Euler’s polyhedron formula, we can show that clustering may result in an up to a 200% boost in signaling amplitude dictated solely by the size and geometry of the network. This is a fundamental relationship that applies to all clustered systems regardless of its components. Nature has figured out a way to maximize the signaling amplitude in receptors that relay weak external signals. In addition, in cell-to-cell interactions, clustering both receptors and ligands may result in maximum efficiency and synchronization. The importance of clustering geometry in signaling efficiency goes beyond biological systems and can inform the design of amplifiers in nonbiological systems.

2017 ◽  
Author(s):  
Eugenia Lyashenko ◽  
Mario Niepel ◽  
Purushottam D. Dixit ◽  
Sang Kyun Lim ◽  
Peter K. Sorger ◽  
...  

AbstractDetecting relative rather than absolute changes in external signals enables cells to make decisions in fluctuating environments and diverse biological contexts. However, how mammalian signaling networks store the memories of past stimuli and use them to compute relative signals is not well understood. Using the growth factor-activated PI3K-Akt signaling pathway, we develop computational and analytical models, and experimentally validate a novel mechanism of relative sensing in mammalian cells. This non-transcriptional mechanism relies on a new form of cellular memory, where cells effectively encode past stimulation levels in the abundance of cognate receptors on the cell surface. We show the robustness and specificity of the relative sensing for two physiologically important ligands, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), and across wide ranges of background stimuli. The described memory and sensing mechanism could play a role in multiple other sensory cascades where stimulation leads to a proportional reduction in the abundance of cell surface receptors.


2019 ◽  
Vol 116 (28) ◽  
pp. 13807-13815 ◽  
Author(s):  
Seung-Min Lim ◽  
Hyunjae Yoo ◽  
Min-Ah Oh ◽  
Seok Hee Han ◽  
Hae-Ryung Lee ◽  
...  

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.


2013 ◽  
Vol 59 (1) ◽  
pp. 22-27
Author(s):  
Jeffrey A. Hadwiger

Proteins with a Vps9 domain function as guanine nucleotide exchange factors for Rab proteins and can mediate the uptake of cell surface receptors or other molecules through endocytosis. However, genes encoding these proteins have not been previously studied in cells with robust chemotactic capabilities. Several genes encoding Vps9 domains were identified in the genome of Dictyostelium discoideum, and one of the genes, designated as rgfA (DDB_G0272038), was examined for functions in cell growth, development, and chemotaxis. The rgfA gene was expressed during vegetative growth and throughout development, but disruption of this gene resulted in no major alterations in cell growth, macropinocytosis, developmental morphology, or chemotactic movement. However, heterologous expression of RgfA resulted in a delay of developmental morphogenesis and impaired chemotaxis of cells to folate but did not affect macropinocytosis. These results suggest that RgfA might share redundant functions with other Dictyostelium Vps9-domain proteins and that heterologous expression of this protein can alter processes that depend on the reception of external signals.


2016 ◽  
Author(s):  
Jonathan T. Young ◽  
Tetsuhiro S. Hatakeyama ◽  
Kunihiko Kaneko

AbstractA most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of how such dynamics robustness emerges in signaling networks. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream information is attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.Author SummaryCells use signaling pathways to transmit information received on its membrane to DNA,and many important cellular processes are tied to signaling networks. Past experiments have shown that cells’ internal signaling networks are sophisticated enough to process and encode temporal information such as the length of time a ligand is bound to a receptor. However, little research has been done to verify whether information encoded onto temporal profiles can be made robust. We examined mathematical models of linear signaling networks and found that the relaxation of the response to a transient stimuli can be made robust to certain parameter fluctuations. Robustness is a key concept in 1/15 biological systems it would be disastrous if a cell could not operate if there was as light change in its environment or physiology. Our research shows that such dynamics robustness does emerge in linear signaling cascades, and we outline the design principles needed to generate such robustness. We discovered that two conditions regarding the speed of the internal chemical reactions and concentration levels are needed to generate dynamics robustness.


Author(s):  
Jin-Rong Yang ◽  
Cheng-Jin Wu ◽  
Jian-Hua Yang ◽  
Hou-Guang Liu

In our former work developed by Yang et al. (2017, “Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators,” ASME J. Comput. Nonlinear Dyn., 12(5), p. 051011), we put forward the rescaled vibrational resonance (VR) method in fractional duffing oscillators to amplify a weak signal with arbitrary high frequency. In the present work, we propose another method named as twice sampling VR to achieve the same goal. Although physical processes of two discussed methods are different, the results obtained by them are identical completely. Besides the two external signals excitation case, the validity of the new proposed method is also verified in the system that is excited by an amplitude modulated signal. Further, the dynamics of the system reveals that the resonance performance, i.e., the strength and the pattern, depends on the fractional order closely.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
Dean A. Handley ◽  
Cynthia M. Arbeeny ◽  
Larry D. Witte

Low density lipoproteins (LDL) are the major cholesterol carrying particles in the blood. Using cultured cells, it has been shown that LDL particles interact with specific surface receptors and are internalized via a coated pit-coated vesicle pathway for lysosomal catabolism. This (Pathway has been visualized using LDL labeled to ferritin or colloidal gold. It is now recognized that certain lysomotropic agents, such as chloroquine, inhibit lysosomal enzymes that degrade protein and cholesterol esters. By interrupting cholesterol ester hydrolysis, chloroquine treatment results in lysosomal accumulation of cholesterol esters from internalized LDL. Using LDL conjugated to colloidal gold, we have examined the ultrastructural effects of chloroquine on lipoprotein uptake by normal cultured fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document