scholarly journals Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1497 ◽  
Author(s):  
Irina Bogolyubova ◽  
Dmitry Bogolyubov

During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded “nucleolus”, which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.

2019 ◽  
Vol 63 (3-4-5) ◽  
pp. 223-233 ◽  
Author(s):  
Alexander I. Shevchenko ◽  
Elena V. Dementyeva ◽  
Irina S. Zakharova ◽  
Suren M. Zakian

In eutherian mammals, dosage compensation arose to balance X-linked gene expression between sexes and relatively to autosomal gene expression in the evolution of sex chromosomes. Dosage compensation occurs in early mammalian development and comprises X chromosome upregulation and inactivation that are tightly coordinated epigenetic processes. Despite a uniform principle of dosage compensation, mechanisms of X chromosome inactivation and upregulation demonstrate a significant variability depending on sex, developmental stage, cell type, individual, and mammalian species. The review focuses on relationships between X chromosome inactivation and upregulation in mammalian early development.


Reproduction ◽  
2009 ◽  
Vol 138 (4) ◽  
pp. 619-627 ◽  
Author(s):  
Greg FitzHarris ◽  
Jay M Baltz

Regulation of intracellular pH (pHi) is a fundamental homeostatic process essential for the survival and proliferation of virtually all cell types. The mammalian preimplantation embryo, for example, possesses Na+/H+and HCO3−/Cl−exchangers that robustly regulate against acidosis and alkalosis respectively. Inhibition of these transporters prevents pH corrections and, perhaps unsurprisingly, leads to impaired embryogenesis. However, recent studies have revealed that the role and regulation of pHiis somewhat more complex in the case of the developing and maturing oocyte. Small meiotically incompetent growing oocytes are apparently incapable of regulating their own pHi, and instead rely upon the surrounding granulosa cells to correct ooplasmic pH, until such a time that the oocyte has developed the capacity to regulate its own pHi. Later, during meiotic maturation, pHi-regulating activities that were developed during growth are inactivated, apparently under the control of MAPK signalling, until the oocyte is successfully fertilized. Here, we will discuss pH homeostasis in early mammalian development, focussing on recent developments highlighting the unusual and unexpected scenario of pH regulation during oocyte growth and maturation.


1999 ◽  
Vol 147 (1) ◽  
pp. 25-32 ◽  
Author(s):  
M. Cristina Cardoso ◽  
Heinrich Leonhardt

The overall DNA methylation level sharply decreases from the zygote to the blastocyst stage despite the presence of high levels of DNA methyltransferase (Dnmt1). Surprisingly, the enzyme is localized in the cytoplasm of early embryos despite the presence of several functional nuclear localization signals. We mapped a region in the NH2-terminal, regulatory domain of Dnmt1 that is necessary and sufficient for cytoplasmic retention during early development. Altogether, our results suggest that Dnmt1 is actively retained in the cytoplasm, which prevents binding to its DNA substrate in the nucleus and thereby contributes to the erasure of gamete-specific epigenetic information during early mammalian development.


2020 ◽  
Author(s):  
Yeonsoo Yoon ◽  
Joy Riley ◽  
Judith Gallant ◽  
Ping Xu ◽  
Jaime A. Rivera-Pérez

SummaryThe period of development between the zygote and embryonic day 9.5 in mice includes multiple developmental milestones essential for embryogenesis. The preeminence of this period of development has been illustrated in loss of function studies conducted by the International Mouse Phenotyping Consortium (IMPC) which have shown that close to one third of all mouse genes are essential for survival to weaning age and a significant number of mutations cause embryo lethality before E9.5. Here we report a systematic analysis of 21 pre-E9.5 lethal lines generated by the IMPC. Analysis of pre- and post-implantation embryos revealed that the majority of the lines exhibit mutant phenotypes that fall within a window of development between implantation and gastrulation with few pre-implantation and no post-gastrulation phenotypes. Our study provides multiple genetic inroads into the molecular mechanisms that control early mammalian development and the etiology of human disease, in particular, the genetic bases of infertility and pregnancy loss. We propose a strategy for an efficient assessment of early embryonic lethal mutations that can be used to assign phenotypes to developmental milestones and outline the time of lethality.


2018 ◽  
Vol 34 (1) ◽  
pp. 405-426 ◽  
Author(s):  
Hui Ting Zhang ◽  
Takashi Hiiragi

We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.


2011 ◽  
Vol 23 (1) ◽  
pp. 94 ◽  
Author(s):  
Thomas Cremer ◽  
Valeri Zakhartchenko

Epigenetic changes, including DNA methylation patterns, histone modifications and histone variants, as well as chromatin remodelling play a fundamental role in the regulation of pre‐ and postimplantation mammalian development. Recent studies have indicated that nuclear architecture provides an additional level of regulation, which needs to be explored in order to understand how a fertilised egg is able to develop into a full organism. Studies of 3D preserved nuclei of IVF preimplantation embryos from different mammalian species, such as mouse, rabbit and cow, have demonstrated that nuclear architecture undergoes major changes during early development. Both similarities and species‐specific differences were observed. Nuclear transfer experiments demonstrated changes of nuclear phenotypes, which to some extent reflect changes seen in IVF preimplantation embryos albeit with a different timing compared with IVF embryos. The dynamics of nuclear architecture is further substantiated by major changes during postmitotic terminal cell differentiation. Recent breakthroughs of 3D fluorescence microscopy with resolution beyond the conventional Abbe limit in combination with 3D electron microscopy provide the potential to explore the topography of nuclear structure with unprecedented resolution and detail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aslı Okan ◽  
Necdet Demir ◽  
Berna Sozen

AbstractDiabetes mellitus (DM) has profound effects on the female mammalian reproductive system, and early embryonic development, reducing female reproductive outcomes and inducing developmental programming in utero. However, the underlying cellular and molecular mechanisms remain poorly defined. Accumulating evidence implicates endoplasmic reticulum (ER)-stress with maternal DM associated pathophysiology. Yet the direct pathologies and causal events leading to ovarian dysfunction and altered early embryonic development have not been determined. Here, using an in vivo mouse model of Type 1 DM and in vitro hyperglycaemia-exposure, we demonstrate the activation of ER-stress within adult ovarian tissue and pre-implantation embryos. In diabetic ovaries, we show that the unfolded protein response (UPR) triggers an apoptotic cascade by the co-activation of Caspase 12 and Cleaved Caspase 3 transducers. Whereas DM-exposed early embryos display differential ER-associated responses; by activating Chop in within embryonic precursors and Caspase 12 within placental precursors. Our results offer new insights for understanding the pathological effects of DM on mammalian ovarian function and early embryo development, providing new evidence of its mechanistic link with ER-stress in mice.


Author(s):  
Ane Iturbide ◽  
Mayra L. Ruiz Tejeda Segura ◽  
Camille Noll ◽  
Kenji Schorpp ◽  
Ina Rothenaigner ◽  
...  

AbstractTotipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures. Such ‘2-cell-like-cells’ (2CLCs) recapitulate 2-cell-stage features and display expanded cell potential. Here, we used 2CLCs to perform a small-molecule screen to identify new pathways regulating the 2-cell-stage program. We identified retinoids as robust inducers of 2CLCs and the retinoic acid (RA)-signaling pathway as a key component of the regulatory circuitry of totipotent cells in embryos. Using single-cell RNA-seq, we reveal the transcriptional dynamics of 2CLC reprogramming and show that ES cells undergo distinct cellular trajectories in response to RA. Importantly, endogenous RA activity in early embryos is essential for zygotic genome activation and developmental progression. Overall, our data shed light on the gene regulatory networks controlling cellular plasticity and the totipotency program.


Sign in / Sign up

Export Citation Format

Share Document