scholarly journals In Situ Detection of Hydrogen Sulfide in 3D-Cultured, Live Prostate Cancer Cells Using a Paper-Integrated Analytical Device

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jae-Hyung Kim ◽  
Young-Ju Lee ◽  
Yong-Jin Ahn ◽  
Minyoung Kim ◽  
Gi-Ja Lee

In this study, a paper-integrated analytical device that combined a paper-based colorimetric assay with a paper-based cell culture platform was developed for the in situ detection of hydrogen sulfide (H2S) in three-dimensional (3D)-cultured, live prostate cancer cells. Two kinds of paper substrates were fabricated using a simple wax-printing methodology to form the cell culture and detection zones, respectively. LNCaP cells were seeded directly on the paper substrate and grown in the paper-integrated analytical device. The cell viability and H2S production of LNCaP cells were assessed using a simple water-soluble tetrazolium salt colorimetric assay and H2S-sensing paper, respectively. The H2S-sensing paper showed good sensitivity (sensitivity: 6.12 blue channel intensity/μM H2S, R2 = 0.994) and a limit of quantification of 1.08 μM. As a result, we successfully measured changes in endogenous H2S production in 3D-cultured, live LNCaP cells within the paper-integrated analytical device while varying the duration of incubation and substrate concentration (L-cysteine). This paper-integrated analytical device can provide a simple and effective method to investigate H2S signaling pathways and drug screening in a 3D culture model.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mingzhe Liu ◽  
Lingyun Wu ◽  
Sabine Montaut ◽  
Guangdong Yang

Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65905-65908 ◽  
Author(s):  
Huimin Wang ◽  
Lixuan Mu ◽  
Guangwei She ◽  
Wensheng Shi

Based on a Si nanowire array, a fluorescent sensor for H2S was realized and successfully used for real time and in situ imaging of the changes in extracellular H2S of live cells.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4883-4892 ◽  
Author(s):  
Rishu Guo ◽  
Elizabeth A. Kasbohm ◽  
Puneeta Arora ◽  
Christopher J. Sample ◽  
Babak Baban ◽  
...  

The bioactive phospholipid lysophosphatidic acid (LPA) promotes cell proliferation, survival, and migration by acting on cognate G protein-coupled receptors named LPA1, LPA2, and LPA3. We profiled gene expression of LPA receptors in androgen-dependent and androgen-insensitive prostate cancer cells and found that LPA1 gene is differentially expressed in androgen-insensitive and LPA-responsive but not androgen-dependent and LPA-resistant cells. In human prostate specimens, expression of LPA1 gene was significantly higher in the cancer compared with the benign tissues. The androgen-dependent LNCaP cells do not express LPA1 and do not proliferate in response to LPA stimulation, implying LPA1 transduces cell growth signals. Accordingly, stable expression of LPA1 in LNCaP cells rendered them responsive to LPA-induced cell proliferation and decreased their doubling time in serum. Implantation of LNCaP-LPA1 cells resulted in increased rate of tumor growth in animals compared with those tumors that developed from the wild-type cells. Growth of LNCaP cells depends on androgen receptor activation, and we show that LPA1 transduces Gαi-dependent signals to promote nuclear localization of androgen receptor and cell proliferation. In addition, treatment with bicalutamide inhibited LPA-induced cell cycle progression and proliferation of LNCaP-LPA1 cells. These results suggest the possible utility of LPA1 as a drug target to interfere with progression of prostate cancer.


Endocrinology ◽  
2000 ◽  
Vol 141 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Sarah E. Blutt ◽  
Timothy J. McDonnell ◽  
Tara C. Polek ◽  
Nancy L. Weigel

Abstract While the role of vitamin D in bone and mineral metabolism has been investigated extensively, the role of the vitamin D receptor in other tissues is less well understood. 1,25-dihydroxyvitamin D3 (calcitriol) can act as a differentiating agent in normal tissues and can inhibit the growth of many cancer cell lines including LNCaP prostate cancer cells. We have shown previously that calcitriol causes LNCaP cell accumulation in the G0/G1 phase of the cell cycle. In this study, we demonstrate that calcitriol also induces apoptosis of LNCaP cells. The calcitriol-induced apoptosis is accompanied by a down-regulation of Bcl-2 and Bcl-XL proteins, both of which protect cells from undergoing apoptosis. Other proteins important in apoptotic control, Bax, Mcl-1, and Bcl-Xs, are unaffected by calcitriol treatment. We find that overexpression of Bcl-2 blocks calcitriol-induced apoptosis and reduces, but does not eliminate, calcitriol-induced growth inhibition. We conclude that both regulation of cell cycle and the apoptotic pathway are involved in calcitriol action in prostate cancer cells.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5023-5033 ◽  
Author(s):  
C. W. Tam ◽  
A. S. Cheng ◽  
R. Y. M. Ma ◽  
K.-M. Yao ◽  
S. Y. W. Shiu

A possible role of the PDZ domain-containing protein 2 (PDZD2) in prostate tumorigenesis has been suggested. Besides, PDZD2 is posttranslationally cleaved by a caspase-dependent mechanism to form a secreted PDZ domain-containing protein 2 (sPDZD2) with unknown functions in humans. In this study, we demonstrate the endogenous expression of PDZD2 and secretion of sPDZD2 in cancerous DU145, PC-3, 22Rv1, LNCaP, and immortalized RWPE-1 prostate epithelial cells. Inhibition of endogenous sPDZD2 production and secretion by DU145, PC-3, 22Rv1, and RWPE-1 cells via the caspase-3 inhibitor Z-DEVD-FMK resulted in increased cell proliferation, which was abrogated by treatment with exogenous recombinant sPDZD2. Whereas sPDZD2-induced antiproliferation in DU145, PC-3, and 22Rv1 cells, it induced apoptosis in LNCaP cells. The data suggest that endogenous sPDZD2, produced by caspase-3-mediated cleavage from PDZD2, may function as a novel autocrine growth suppressor for human prostate cancer cells. The antiproliferative effect of sPDZD2 was apparently mediated through slowing the entry of DU145, PC-3, and 22Rv1 cells into the S phase of the cell cycle. In DU145 cells, this can be attributed to stimulated p53 and p21CIP1/WAF1 expression by sPDZD2. On the other hand, the apoptotic effect of sPDZD2 on LNCaP cells was apparently mediated via p53-independent Bad stimulation. Together our results indicate the presence of p53-dependent and p53-independent PDZD2/sPDZD2 autocrine growth suppressive signaling pathways in human prostate cancer cells and suggest a novel therapeutic approach of harnessing the latent tumor-suppressive potential of an endogenous autocrine signaling protein like sPDZD2 to inhibit prostate cancer growth.


2010 ◽  
Vol 433 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Jong-Seok Moon ◽  
Won-Ji Jin ◽  
Jin-Hye Kwak ◽  
Hyo-Jeong Kim ◽  
Mi-Jin Yun ◽  
...  

Up-regulation of lipogenesis by androgen is one of the most characteristic metabolic features of LNCaP prostate cancer cells. The present study revealed that androgen increases glucose utilization for de novo lipogenesis in LNCaP cells through the activation of HK2 (hexokinase 2) and activation of the cardiac isoform of PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase). Activation of PKA (cAMP-dependent protein kinase) by androgen increased phosphorylation of CREB [CRE (cAMP-response element)-binding protein], which in turn bound to CRE on the promoter of the HK2 gene resulting in transcriptional activation of the HK2 gene. Up-regulation of PFKFB2 expression was mediated by the direct binding of ligand-activated androgen receptor to the PFKFB2 promoter. The activated PI3K (phosphoinositide 3-kinase)/Akt signalling pathway in LNCaP cells contributes to the phosphorylation of PFKFB2 at Ser466 and Ser483, resulting in the constitutive activation of PFK-2 (6-phosphofructo-2-kinase) activity. Glucose uptake and lipogenesis were severely blocked by knocking-down of PFKFB2 using siRNA (small interfering RNA) or by inhibition of PFK-2 activity with LY294002 treatment. Taken together, our results suggest that the induction of de novo lipid synthesis by androgen requires the transcriptional up-regulation of HK2 and PFKFB2, and phosphorylation of PFKFB2 generated by the PI3K/Akt signalling pathway to supply the source for lipogenesis from glucose in prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document