scholarly journals Assessing the Capability of Computational Fluid Dynamics Models in Replicating Wind Tunnel Test Results for the Rose Fitzgerald Kennedy Bridge

CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 1065-1090
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Fergal Cahill ◽  
Jennifer Keenahan

Despite its wide acceptance in various industries, CFD is considered a secondary option to wind tunnel tests in bridge engineering due to a lack of confidence. To increase confidence and to advance the quality of simulations in bridge aerodynamic studies, this study performed three-dimensional RANS simulations and DESs to assess the bridge deck aerodynamics of the Rose Fitzgerald Kennedy Bridge and demonstrated detailed procedures of the verification and validation of the applied CFD model. The CFD simulations were developed in OpenFOAM, the results of which are compared to prior wind tunnel test results, where general agreements were achieved though differences were also found and analyzed. The CFD model was also applied to study the effect of fascia beams and handrails on the bridge deck aerodynamics, which were neglected in most research to-date. These secondary structures were found to increase drag coefficients and reduce lift and moment coefficients by up to 32%, 94.3%, and 52.2%, respectively, which emphasized the necessity of including these structures in evaluations of the aerodynamic performance of bridges in service. Details of the verification and validation in this study illustrate that CFD simulations can determine close results compared to wind tunnel tests.

2021 ◽  
Vol 1201 (1) ◽  
pp. 012007
Author(s):  
I. Kusano ◽  
E. Cheynet ◽  
J. B. Jakobsen ◽  
J. Snæbjörnsson

Abstract Assessing the aerodynamic characteristics of long-span bridges is fundamental for their design. Depending on the terrain complexity and local wind conditions, episodes of large angles of attack (AoA) of 15° may be observed. However, such large AoAs ( above 10°) are often overlooked in the design process. This paper studies the aerodynamics properties of a flow around a single-box girder for a wide range of AoAs, from –20° to 20°, using numerical simulations. The simulations are based on a 2D unsteady Reynolds-averaged Navier–Stokes (URANS) approach using the k − ω SST turbulence model with a Reynolds number of 1.6 × 105. Numerically obtained aerodynamic static coefficients were compared to wind tunnel test data. The CFD results were generally in good agreement with the wind tunnel tests, especially for small AoAs and positive AoAs. More discrepancies were observed for large negative AoA, likely due to the limitation of modelling 3D railings with 2D simulations. The simulated velocity deficit downstream of the deck was consistent with the one measured in full-scale using short-range Doppler wind lidar instruments. Finally, the Strouhal number from the CFD simulations were in agreement with the value obtained from the full-scale data.


2011 ◽  
Vol 201-203 ◽  
pp. 2763-2766
Author(s):  
Cheng Qi Wang ◽  
Zheng Liang Li ◽  
Zhi Tao Yan

By means of wind tunnel tests on the sectional models of Chaotianmen Yangtze River Bridge, some important results are obtained, including the aerostatic force coefficients with the changing of attack angles, and eight flutter derivatives for the bridge deck. The wind-resistant behavior of the bridge is evaluated.


2013 ◽  
Vol 404 ◽  
pp. 188-193
Author(s):  
Jing Chen ◽  
Tao Song ◽  
Deng Feng Wang

The drag reduction characteristic of air deflector of a heavy-duty vehicle is examined through CFD simulations and wind tunnel test in this paper. The CFD model of the truck is built using the FLUENT software and the simulation results are compared with the wind tunnel test data to verify the accuracy of simulation model. An air deflector is designed for this truck, A design of experiments approach was chosen as an efficient technique to optimize the design parameter and match with the truck to obtain the optimal drag reduction performance.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032083
Author(s):  
Qi Zhou ◽  
Yuxiang Zhu ◽  
Yu Wang ◽  
Jiceng Han

Abstract At present, the wind tunnel test results will have certain deviation and distortion when the wind tunnel test is conducted on certain mountainous terrain with complex local terrain and large variation of wind field characteristics due to the accuracy range of the measuring instruments used in wind tunnel test. In order to correct and obtain correct wind tunnel test results, the wind tunnel tests and numerical simulations were conducted on a super-large bridge in the mountainous area of Southwest China, and the wind parameters of the wind field at the bridge site were obtained. The CFD results were compared with the wind tunnel test results to confirm the credibility of the CFD results; a method was proposed to correct the deviated wind tunnel test data based on the CFD simulation results; the deviated wind tunnel test data were corrected and predicted with the above method, and a more satisfactory correction result was obtained.


2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2021 ◽  
Vol 11 (8) ◽  
pp. 3315
Author(s):  
Fabio Rizzo

Experimental wind tunnel test results are affected by acquisition times because extreme pressure peak statistics depend on the length of acquisition records. This is also true for dynamic tests on aeroelastic models where the structural response of the scale model is affected by aerodynamic damping and by random vortex shedding. This paper investigates the acquisition time dependence of linear transformation through singular value decomposition (SVD) and its correlation with floor accelerometric signals acquired during wind tunnel aeroelastic testing of a scale model high-rise building. Particular attention was given to the variability of eigenvectors, singular values and the correlation coefficient for two wind angles and thirteen different wind velocities. The cumulative distribution function of empirical magnitudes was fitted with numerical cumulative density function (CDF). Kolmogorov–Smirnov test results are also discussed.


2019 ◽  
Vol 52 (12) ◽  
pp. 128-133
Author(s):  
Yoshiro Hamada ◽  
Kenichi Saitoh ◽  
Noboru Kobiki

2013 ◽  
Vol 361-363 ◽  
pp. 1105-1109
Author(s):  
Chun Sheng Shu

Liujiaxia Bridge is a truss stiffening girder suspension bridge which span is 536m, and it is the narrowest suspension bridge with the same scale, so the problems of flutter stability are prominent. Results of wind tunnel test show that its critical velocity cannot meet the requirements without any aerodynamic measures. Based on above considerations, seven kinds of aerodynamic measures are proposed, respectively wind tunnel tests are conducted. The results show that the program, in which the upper central stable board is 1.12m high and the under central stable board is 1.28m high, can meet the requirements. The results of this study provide some references to solving the problem of wind-resistant stability of narrow deck suspension bridge.


2011 ◽  
Vol 130-134 ◽  
pp. 103-107 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Shui Liang Wang ◽  
Yan Sun

It is crucial measuring position and attitude of model to gain the precise and accurate data in wind tunnel tests. The model displacement videogrammetric measurement (MDVM) system and its key techniques such as the exterior orientation with big rotation angles and large-overlap, mark points, image processing and calibration based on the known distances are therefore presented. The practice example in Asia's largest (2.4m) transonic wind tunnel has demonstrated the MDVM system and its key techniques are correct and feasible, and they have application value.


2016 ◽  
Vol 66 (4) ◽  
pp. 34-39 ◽  
Author(s):  
Dijana Damljanovic ◽  
Djordje Vukovic ◽  
Aleksandar Vitic ◽  
Jovan Isakovic ◽  
Goran Ocokoljic

Sign in / Sign up

Export Citation Format

Share Document