scholarly journals Experimental Study on the Reliability of Scaling Down Techniques Used in Direct Shear Tests to Determine the Shear Strength of Rockfill and Waste Rocks

CivilEng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 35-50
Author(s):  
Akram Deiminiat ◽  
Li Li

The determination of shear strength parameters for coarse granular materials such as rockfill and waste rocks is challenging due to their oversized particles and the minimum required ratio of 10 between the specimen width (W) and the maximum particle size (dmax) of tested samples for direct shear tests. To overcome this problem, a common practice is to prepare test samples by excluding the oversized particles. This method is called the scalping scaling down technique. Making further modifications on scalped samples to achieve a specific particle size distribution curve (PSDC) leads to other scaling down techniques. Until now, the parallel scaling down technique has been the most popular and most commonly applied, generally because it produces a PSDC parallel and similar to that of field material. Recently, a critical literature review performed by the authors revealed that the methodology used by previous researchers to validate or invalidate the scaling down techniques in estimating the shear strength of field materials is inappropriate. The validity of scaling down techniques remains unknown. In addition, the minimum required W/dmax ratio of 10, stipulated in ASTM D3080/D3080M-11 for direct shear tests, is not large enough to eliminate the specimen size effect (SSE). The authors’ recent experimental study showed that a minimum W/dmax ratio of 60 is necessary to avoid any SSE in direct shear tests. In this study, a series of direct shear tests were performed on samples with different dmax values, prepared by applying scalping and parallel scaling down techniques. All tested specimens had a W/dmax ratio equal to or larger than 60. The test results of the scaled down samples with dmax values smaller than those of field samples were used to establish a predictive equation between the effective internal friction angle (hereafter named “friction angle”) and dmax, which was then used to predict the friction angles of the field samples. Comparisons between the measured and predicted friction angles of field samples demonstrated that the equations based on scalping scaling down technique correctly predicted the friction angles of field samples, whereas the equations based on parallel scaling down technique failed to correctly predict the friction angles of field samples. The scalping down technique has been validated, whereas the parallel scaling down technique has been invalidated by the experimental results presented in this study.

2021 ◽  
Vol 5 (2) ◽  
pp. 125
Author(s):  
Mohammad Afrazi ◽  
Mahmoud Yazdani

Many geotechnical problems require the determination of soil engineering properties such as shear strength. Therefore, the determination of the reliable values for this parameter is essential. For this purpose, the direct shear test, as one of the oldest tests to examine the shear strength of soils, is the most common way in laboratories to determine the shear parameters of soil. There are far too many variables that influence the results of a direct shear test. In this paper, a series of 10 × 10 cm direct shear tests were carried out on four different poorly graded sands with different particle size distributions to determine their shear behaviors. Four different poorly graded sands with a different median diameter or medium value of particle size distribution (D50) (0.2, 0.53, 1.3, and 2.3 mm) has been selected, and about 40 direct shear tests were conducted. It was concluded that a soil’s friction angle is affected by coarse-grained material. Accordingly, sandy soils with bigger particle sizes record a higher friction angle than soils containing small particles. The investigations also showed that sand with bigger particle sizes has a higher dilation angle. In addition, a non-linear regression analysis was performed to establish the exact relationship between the friction angle of the soil and the characteristics of the soil particles. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2019 ◽  
Vol 56 (2) ◽  
pp. 208-227 ◽  
Author(s):  
Samaneh Amirpour Harehdasht ◽  
Mahmoud N. Hussien ◽  
Mourad Karray ◽  
Varvara Roubtsova ◽  
Mohamed Chekired

Upon close scrutiny of data reported in the literature, taking into account particle-scale characteristics to optimize the precision of the well-known empirical Bolton’s equations and imposing particle-size limits on them is recommended. The present paper examines the potential influence of particle size and grading on the shear strength–dilation relation of granular materials from the results of 276 symmetrical direct shear tests. The applicability of physical symmetrical direct shear tests to interpret the plane strain frictional shearing resistance of granular materials has been widely discussed using the discrete element method (DEM) computer code SiGran. Sixteen different grain-size distribution curves of three different materials were tested at different normal pressures and initial relative densities. It is demonstrated that while the contribution of dilatancy to shear strength is not influenced by the variation in the coefficient of uniformity, Cu, in the investigated range, it significantly decreases with increasing mean particle size, D50. The coefficients of Bolton’s equations have been, therefore, adjusted to account for D50. A comparison of the predictions by the proposed empirical formulas with plane strain friction angle, [Formula: see text], and dilation angle, ψ, data from the literature shows that accounting for the grain size yields more accurate results.


2013 ◽  
Vol 3 (4) ◽  
pp. 497-501 ◽  
Author(s):  
E. Mostefa Kara ◽  
M. Meghachou ◽  
N. Aboubekr

This work studies the correlation between certain physical properties of granular material such as the friction angle and the grain size distribution. In the laboratory, the determination of friction angle requires hard and expensive testing. Prediction of this parameter from the grading curve proves to be very interesting. Direct shear tests were performed on actual marine sand of Tergha (Algeria) and on seventeen different samples arranged from the same sand with various particle size ranges. Results showed that the friction angle of sand is a result of contribution of various constituent granular classes.


PROMINE ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 71-77
Author(s):  
Novandri Kusuma Wardana

Mining activities is commonly to work with the problem of stability of rock mass, then befordesaining mine’s slope should know rock shear strength parameters, such as cohesion (c) andinternal friction angle value ( . Beside those parameters, also needed to know the impact ofwater content to the rocks. The water content will effect rock’s shear strength, proof by the rockcondition which is ductile when it is dry and soft when it is wet. Based on test results was doneusing sandstone with laboratory scale of direct shear test were analyzed using mohr – coulomband patton criteria (1966). It is known that the cohesion (c) of sandstone decreased from 510,35kPa at natural condition down to 133,75 kPa at wet condition. The internal friction angle ( ) alsodecreased from 54,56° at natural condition down to 48,45° at wet condition. The reduction of theshear strength is caused by fragments and clay minerals characteristics which are so reactiveand very easy to absorb water so that the cohesion of the sandstone reduce the active normalstress so that working the shear stress required to cause the shear failure becomeweaker. From the results, it is also known that the shear surface roughness had a lot ofinfluence on the shear strength the normal stresses applied on the direct shear tests werevery low under 20% of UCS.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
Niken Silmi Surjandari ◽  
Noegroho Djarwanti ◽  
Gunawan Prasetyo ◽  
Febby Erianto

Peat is known as a problematic soil due to its low bearing capacity as well as its high and long settlement process. Necessary treatment is needed to improve peat soil capability. One of the methods to improve peat soil characteristics is by adding mixed materials. In this study the added materials are synthetic gypsum (CaSO4.2H20) and salt (NaCl). The research was conducted in a Soil Mechanics Laboratory using a consolidation test and direct shear tests. This research aims to find out the effect of CaSO4.2H20 and NaCl on consolidation and shear strength parameters. The soil samples taken for consolidation and direct shear tests were original and treated peat soil. The gypsum synthesis doses varied between 10%, 15%, and 20%, whereas the salt varied between 2%, 4%, and 6%, calculated from the dry weight of peat soil. The mixing of soil and the added materials was carried out under optimum water conditions of Standard Proctor compaction results. After the consolidation and direct shear tests were completed, the Scanning Electron Microscope (SEM) test was performed on the soil samples to determine the components of the peat soil on micron size. The addition of synthetic gypsum and salt resulted in the smallest Cc value of 0.0302 at 4% salt + 20% gypsum and the highest Cv value of 0.130 cm2/s at 6% salt + 20% gypsum. The addition of synthetic gypsum and salt mixture resulted in the highest cohesion, c value of 61,55 kPa at 6% salt + 15% gypsum and the greatest friction angle, ϕ value of 52.24° at 4% salt + 20% gypsum. NaCl gave better results than Gypsum in improving shear strength. A composition of 4%-6% of NaCl and 15%-20% of Gypsum is recommended, if NaCl and gypsum were to be applied simultaneously to improve shear strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Akram Deiminiat ◽  
Li Li ◽  
Feitao Zeng ◽  
Thomas Pabst ◽  
Paul Chiasson ◽  
...  

Determining the shear strength of rockfill is a key task for the design and stability analysis of rockfill structures. When direct shear tests are performed, the well-established ASTM standard requires that specimen width and thickness must be at least 10 and 6 times the maximum particle size (dmax), respectively. When the value of dmax is very large, performing such tests in laboratory with field rockfill becomes difficult or impossible. Four scaling-down techniques were proposed in the past to obtain a modeled sample excluding oversize particles: scalping, parallel, replacement, and quadratic. It remains unclear which of the four scaling-down techniques yields reliable shear strength of field rockfill. In this paper, an extensive review is presented on existing experimental results to analyze the capacity of each scaling-down technique to determine the field rockfill shear strength. The analyses show that previous researches followed an inappropriate methodology to validate or invalidate a scaling-down technique through a direct comparison between the shear strengths of modeled and field samples. None of the four scaling-down techniques was shown to be able or unable to predict the field rockfill shear strength by extrapolation. The analyses further show that the minimum ratios of specimen size to dmax dictated by well-established standards are largely used but are too small to eliminate the specimen size effect. In most cases, this practice results in shear strength overestimation. The validity or invalidity of scaling-down techniques based on experimental results obtained by using the minimum ratios is uncertain. Recommendations are given for future studies.


2011 ◽  
Vol 71-78 ◽  
pp. 1907-1910
Author(s):  
Tian Yun Liu ◽  
Ai Min Liu ◽  
Zhi Fa Yu

It is found that great differences exist in the consolidated quick direct shear strength index of the silty clay based on several consolidated quick direct shear tests with different rate of shear. In this letter, the changes of the water-content coefficients of the soil samples before and after the tests are analyzed. The results indicate that the drain consolidation phenomenon exists during the consolidated quick direct shear tests. Different rates of shear are corresponding to different levels of drain consolidation, and then the strength index is different. Furthermore, the reason of the fact that the friction angle of the silty clay relatively increases with different rates of shear, while the cohesive strength decreases relatively is explained.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


Sign in / Sign up

Export Citation Format

Share Document