scholarly journals Fabrication of an Organo-Fluoride–Free Hydrophobic Film Using the Sol-Gel Method by Factors Screening and Poly-Acrylic Acid Addition

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1011
Author(s):  
Meng-Wei Shen ◽  
Shyi-Tien Chen

Improving silica film’s contact angle (CA) using tetraethoxysilane (TEOS) and iso-butyltrimethoxysilane (iso-BTMS) by the sol-gel method without adding organo-fluoride substances is of interest. Five factors, namely type of solvent, molar ratio and amounts of TEOS and iso-BTMS, mixing intensity, sol aging time, and presence and absence of poly-acrylic acid (PAA), were assessed to improve the static water CA of the film and its surface quality. Results revealed that when ethanol was used as the dissolving solvent and after adding initial iso-BTMS and TEOS concentrations of 0.0270 and 0.0194 mol/L (molar ratio = 1.39), respectively, without sonication and adding PAA/TEOS weight ratio of 0.029, then the maximum static CA of the film reached 147°, a nearly super-hydrophobic surface. Under given conditions, long-term film durability was observed, and the added PAA prevented the formation of nonhomogeneous film surfaces caused by the highly clustering aggregation of silanols under high pH conditions.

2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


2011 ◽  
Vol 412 ◽  
pp. 223-226 ◽  
Author(s):  
Wei Hui Jiang ◽  
Yan Hui Yang ◽  
Qing Xia Zhu ◽  
Jian Min Liu

ron-zircon pigment has been synthesized by non-hydrolytic sol-gel method using zirconium chloride and tetraethoxysilane as precursors, anhydrous ferric chloride as colorant, lithium fluoride as mineralizer and anhydrous ethanol as solvent. Iron-zircon pigment has been characterized by means of DTA-TG, XRD, Colorimeter and TEM. The results show that only a small fraction of iron is incorporated in the zircon crystal structure while the remaining iron cations are trapped within the zircon matrix. The iron-zircon with the red value (a*) of 20.64 can be synthesized at 700°C with the optimum Fe/Zr molar ratio of 0.2.


2002 ◽  
Vol 17 (3) ◽  
pp. 590-596 ◽  
Author(s):  
G. Ennas ◽  
M. F. Casula ◽  
G. Piccaluga ◽  
S. Solinas ◽  
M. P. Morales ◽  
...  

γ–Fe2O3/SiO2 and Fe/SiO2 nanocomposites, with a Fe/Si molar ratio of 0.25, were prepared by the sol-gel method starting from ethanolic solutions of tetraethoxysilane and iron (III) nitrate. After gelation the xerogels were oxidated or reduced. Samples were investigated by transmission electron microscopy, x-ray diffraction, differential scanning calorimetry, and thermogravimetry. Magnetic properties of the samples were investigated at room temperature (RT) and at 77 K. Nanometric particles supported in the silica matrix were obtained in all cases. Bigger particles (10 nm) were obtained in the case of Fe/SiO2 nanocomposites with respect to the γ–Fe2O3/SiO2 samples (5–8 nm). A slight effect of sol dilution on particle size was observed only in the case of γ–Fe2O3/SiO2 nanocomposites. A superparamagnetic behavior was shown at RT only by γ–Fe2O3/SiO2 nanocomposites. Iron-based composites exhibited coercivity values higher than 700 Oe at RT.


2011 ◽  
Vol 393-395 ◽  
pp. 1287-1290
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Qi Xing

The N-doped Cu11O2 (VO4)6 photocatalyst was prepared using the sol-gel method. Techniques of X-ray diffraction (XRD), scanning electron microscope (SEM) have been employed to characterize the as-synthesized materials. During liquid phase photocatalytic degradation of Methy lorange(MO) under the UV-light, the as-prepared N-doped Cu11O2 (VO4)6 exhibits higher activity than the pure Cu11O2 (VO4)6 without doped N. It found that the N-doped Cu11O2 (VO4)6 prepared with the molar ratio of citric acid to metal inons be 2:1, N/Cu molar ratio of 12%, pH=7 and calcinated under 500°C for 4 hours was pure triclinic phase. In this conditions, the sample had highest photocatalytic activity with the photodegradation rate was about 94.42% or so in 60min under 20W ultraviolet lamp.


2014 ◽  
Vol 977 ◽  
pp. 59-62 ◽  
Author(s):  
Jun Qing Tian ◽  
Hai Ying Shi ◽  
Wei Zheng

Fluorine-doped tin dioxide (FTO) nanocrystals were prepared with sol–gel method using SnCl4·5H2O and NH4F as precursor material. The FTO was characterized with X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis and Thermal Grativity (DTA-TG) and Infrared Radiation (IR) respectively. The electrical property was measured with Hall Effect Sensor. The result of XRD and SEM shows that FTO nanocrystal size is about 20 nm and the dimension of the grain is about 300 nm. IR spectrum analysis proves fluorine doping. The crystal phase transformation was discussed with DTA-TG curve. When the sintering temperature is 450°C, the sintering time is 60 min, and the molar ratio of F to Sn is 2:10, the sheet resistance of FTO film is 107Ω/□.


2010 ◽  
Vol 8 (1) ◽  
pp. 47-53
Author(s):  
Haryo Satriya Oktaviano ◽  
Wega Trisunaryanti

Cobalt and nickel based catalysts for ethanol steam reforming have been prepared. Preparation of Na-Ni-Mo/C, Na-Co-Mo/C, K-Ni-Mo/C and K-Co-Mo/C have been carried out using sol-gel method by applying citric acid as complexion agent and source for support formation. Prepared catalyst via sol gel showed tailored morphological properties signed by tailored pore size distribution. The acidity of catalyst showed that all catalysts contain only Lewis acid site. The catalyst activity test was conducted by using semi flow method with molar ratio of ethanol : water = 0.33 at 400 oC   Keywords: sol-gel method, steam reforming, ethanol


2018 ◽  
Vol 204 ◽  
pp. 05005 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Maykel T.E. Manawan ◽  
Marlin Wijaya

The nanomultiferroic material which is synthesized in this research used sol-gel method. The research used weight ratio of BaTiO3: BiFeO3 of 2: 1. Gel formed after heating at 80-90°C was calcined at 350°C for 4 hours and then sintered at 700,750 and 800°C for 2, 4 and 6 hours respectively. Powder produced after sintering was characterized by X-Ray Diffraction (XRD) test using XRD Phillips PW 1835 type, 20°-100° diffraction angle and CuKα, electric polarization properties test and particle size measurement using Particle Size Analyzer of Beckman Coulter DelsaTM Nano instrument. From the characterization results, it is obtained that the dominant phase is Barium Bismuth Iron (III) Oxide (BaBiFe2O5). Electrical polarization properties such as remanent, coersivity and saturation reach maximum value at sinter temperature of 750° C and sinter time of 6 hours. This result is supported by the smallest particle size of powder (54-57 nm) and also supported by the largest number of dominant phase (98.79%) at same condition.


2011 ◽  
Vol 25 (21) ◽  
pp. 2823-2839 ◽  
Author(s):  
Y. VAHIDSHAD ◽  
H. ABDIZADEH ◽  
H. R. BAHARVANDI ◽  
M. AKBARI BASERI

A sol-gel method is investigated to synthesize CuO – ZrO 2 nanoparticles as catalyst for hydrogen production from methanol. Finer precursor nanoparticles give rise to larger specific areas in catalyst which result in a high hydrogen production. The effects of some critical process parameters on the sol-gel synthesis of CuO – ZrO 2 nanoparticles are studied. These parameters are affected on synthesis of CuO – ZrO 2 when it is prepared with sol-gel method. Particle size and distribution are considered as the results. The parameters including the effect of calcination temperature, aging temperature, nature and concentration of catalyst (acidic or basic conditions), H 2 O /precursor molar ratio, and chelating agent that have been identified as most important, are focused. It is found that the calcination temperature strongly influenced the morphology and interaction between the active species and support, and hence the structure and catalytic performance. Nature and concentration of catalyst ( pH value), chelating agent, ( H 2 O /precursor) molar ratio and also aging temperature have influence on the nanoparticles. Thus, by controlling these factors, it is possible to vary the morphology and properties of the sol-gel-derived inorganic network over wide ranges. Morphology, particle size and distribution, phase evaluation, structure, and chemical analysis of the products are investigated by SEM, TEM, DTA/TG, XRD and EDX respectively.


Sign in / Sign up

Export Citation Format

Share Document