scholarly journals On the Etching Mechanism of Highly Hydrogenated SiN Films by CF4/D2 Plasma: Comparison with CF4/H2

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1535
Author(s):  
Shih-Nan Hsiao ◽  
Thi-Thuy-Nga Nguyen ◽  
Takayoshi Tsutsumi ◽  
Kenji Ishikawa ◽  
Makoto Sekine ◽  
...  

With the increasing interest in dry etching of silicon nitride, utilization of hydrogen-contained fluorocarbon plasma has become one of the most important processes in manufacturing advanced semiconductor devices. The correlation between hydrogen-contained molecules from the plasmas and hydrogen atoms inside the SiN plays a crucial role in etching behavior. In this work, the influences of plasmas (CF4/D2 and CF4/H2) and substrate temperature (Ts, from −20 to 50 °C) on etch rates (ERs) of the PECVD SiN films were investigated. The etch rate performed by CF4/D2 plasma was higher than one obtained by CF4/H2 plasma at substrate temperature of 20 °C and higher. The optical emission spectra showed that the intensities of the fluorocarbon (FC), F, and Balmer emissions were stronger in the CF4/D2 plasma in comparison with CF4/H2. From X-ray photoelectron spectra, a thinner FC layer with a lower F/C ratio was found in the surface of the sample etched by the CF4/H2 plasma. The plasma density, gas phase concentration and FC thickness were not responsible for the higher etch rate in the CF4/D2 plasma. The abstraction of H inside the SiN films by deuterium and, in turn, hydrogen dissociation from Si or N molecules, supported by the results of in situ monitoring of surface structure using attenuated total reflectance-Fourier transform infrared spectroscopy, resulted in the enhanced ER in the CF4/D2 plasma case. The findings imply that the hydrogen dissociation plays an important role in the etching of PECVD-prepared SiN films when the hydrogen concentration of SiN is higher. For the films etched with the CF4/H2 at −20 °C, the increase in ER was attributed to a thinner FC layer and surface reactions. On the contrary, in the CF4/D2 case the dependence of ER on substrate temperature was the consequence of the factors which include the FC layer thickness (diffusion length) and the atomic mobility of the etchants (thermal activation reaction).

Author(s):  
Wenbo Sun ◽  
Zhenhao Zhang ◽  
Wenjing Ren ◽  
Jyoti Mazumder ◽  
Jionghua (Judy) Jin

Abstract Quality assurance techniques are increasingly demanded in additive manufacturing. Going beyond most of the existing research that focuses on the melt pool temperature monitoring, we develop a new method that monitors the in-situ optical emission spectra signals. Optical emission spectra signals have been showing a potential capability of detecting microscopic pores. The concept is to extract features from the optical emission spectra via deep auto-encoders, and then cluster the features into two quality groups to consider both unlabelled and labelled samples in a semi-supervised manner. The method is integrated with multitask learning to make it adaptable for the samples collected from multiple processes. Both a simulation example and a case study are performed to demonstrate the effectiveness of the proposed method.


1990 ◽  
Vol 39 (12) ◽  
pp. 1965
Author(s):  
ZHANG FANG-QING ◽  
ZHANG YA-FEI ◽  
YANG YING-HU ◽  
LI JING-QI ◽  
CHEN GUANG-HUA ◽  
...  

2002 ◽  
Vol 16 (28n29) ◽  
pp. 4475-4478 ◽  
Author(s):  
HUIDONG YANG ◽  
CHUNYA WU ◽  
SHAOZHENG XIONG ◽  
YAOHUA MAI ◽  
HONGBO LI ◽  
...  

The intensities of SiH*, [Formula: see text] and H* of VHF-GD for depositing μc-Si:H were much higher than those of RF-GD for depositing a-Si:H. The SiH* intensity of VHF-GD became higher than its Si* intensity as the hydrogen dilution ratio decreased. The influences of the hydrogen dilution ratio on the plasma optical emission spectra also depended on the reaction pressure, the excitation power as well as the excitation frequency.


2010 ◽  
Vol 19 (1) ◽  
pp. 15-20 ◽  
Author(s):  
G.C. Chen ◽  
B. Li ◽  
H. Li ◽  
X.Q. Han ◽  
L.F. Hei ◽  
...  

Author(s):  
Н.М. Эрдевди ◽  
А.И. Булгакова ◽  
О.Б. Шпеник ◽  
А.Н. Завилопуло

Excitation processes in collisions of low-energy electrons (1-100 eV) with glutamine molecules in the gas phase have been studied. The optical emission spectra were measured in the wavelength range from 250-520 nm and it was found that, as a result of the decomposition of glutamine molecules, OH molecular emissions and some other molecular fragments are most efficiently formed. And excited hydrogen atoms are also detected. It was found that the excitation thresholds of molecular emissions are 10–12 eV, while the atomic lines of hydrogen are 13–15 eV. The energy dependences of the excitation of individual emissions from a threshold to 50 eV are also presented.


2009 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Do-Yeob Kim ◽  
Min-Su Kim ◽  
Tae-Hoon Kim ◽  
Ghun-Sik Kim ◽  
Hyun-Young Choi ◽  
...  

2021 ◽  
pp. 117-121
Author(s):  
O.A. Nedybaliuk ◽  
T.A. Tereshchenko ◽  
I.I. Fedirchyk ◽  
P.V. Tyshchuk ◽  
V.P. Demchina

The article presents the results of the investigation of the reforming of ethanol into synthesis gas using a plasmacatalytic system with either AC or DC wide-aperture rotating gliding discharge. Current and voltage oscillograms of the wide-aperture rotating gliding discharge were measured. The time-dependence of the instantaneous power of the discharge in the air was built. The photographs of the discharge in the airflow and discharge during the ethanol reforming were compared. The optical emission spectra of the plasmas of the torches of AC and DC wide-aperture rotating gliding discharges were studied. The rotational and vibrational temperatures of the plasma torch in the reaction chamber were determined. The results of the gas-chromatography of the synthesis gas produced during the plasm-catalytic reforming of ethanol using either AC or DC rotating gliding discharge are presented.


Sign in / Sign up

Export Citation Format

Share Document