scholarly journals An Approach for Material Model Identification of a Composite Coating Using Micro-Indentation and Multi-Scale Simulations

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Pouya Shojaei ◽  
Riccardo Scazzosi ◽  
Mohamed Trabia ◽  
Brendan O’Toole ◽  
Marco Giglio ◽  
...  

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understanding of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal matrix nanocomposite (MMNC) coating, with a 5% weight of SiC nanoparticles deposited over a Ti-6Al-4V substrate using selective laser melting (SLM). Micro-indentation testing was conducted on both the Ti/SiC MMNC coating and the Ti-6Al-4V substrate. The results of the meso-scale finite element indicated that the MMNC coating can be represented using a bi-linear elastic-plastic material model, which was incorporated within an axisymmetric micro-scale model. Comparison of the experimental and micro-scale model results indicated that the proposed approach was effective in capturing the post-indentation behavior of the Ti/SiC MMNC coating. This methodology can also be used for studying the response of composite coatings with different percentages of reinforcements.

2018 ◽  
Vol 157 ◽  
pp. 02038
Author(s):  
Peter Pecháč ◽  
Milan Sága

This paper presents numerical simulation of blanking process for cold-rolled steel sheet metal. The problem was modeled using axial symmetry in commercial finite element software ADINA. Data obtained by experimental measurement were used to create multi-linear plastic material model for simulation. History of blanking force vs. tool displacement was obtained.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


2007 ◽  
Vol 344 ◽  
pp. 341-348
Author(s):  
Mehmet Ali Pişkin ◽  
Bilgin Kaftanoğlu

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no defects. In this work, a finite element method is developed to simulate deep-drawing operation including wrinkling. A four nodded five degree of freedom shell element is formulated. Isotropic elasto-plastic material model with Von Mises yield criterion is used. By using this shell element, the developed code can predict the bending behavior of workpiece besides membrane behavior. Simulations are carried out with four different element sizes. The thickness strain and nodal displacement values obtained are compared with results of a commercial finite element program and results of previously conducted experiments.


Author(s):  
Avinash Shaw ◽  
Heramb Mahajan ◽  
Tasnim Hassan

Abstract Printed Circuit Heat Exchangers (PCHEs) have high thermal efficiency because of the numerous minuscule channels. These minuscule channels result in a high thermal exchange area per unit volume, making PCHE a top contender for an intermediate heat exchanger in high-temperature reactors. Thousands of minuscule channels make finite element analysis of the PCHE computationally infeasible. A two-dimensional analysis is usually performed for the PCHE core, which cannot simulate the local channel level responses reasonably because of the absence of global constraint influence. At present, there is no analysis technique available in the ASME Code or literature that is computationally efficient and suitable for engineers to estimate PCHE local responses. A novel but practical two-step analysis framework is proposed for performing PCHE analysis. In the first step, the channeled core is replaced by orthotropic solids with similar stiffness to simulate the global thermomechanical elastic responses of the PCHE. In the second step, local submodel analysis with detailed channel geometry and loading is performed using the elastic-perfectly plastic material model. The proposed two-step analysis technique provides a unique capability to estimate the channel corner responses to be used for PCHE performance assessment. This study first developed a methodology for calculating the elastic orthotropic properties of the PCHE core. Next, the two-step analysis is performed for a realistic size PCHE core, and different issues observed in the results are scrutinized and resolved. Finally, a practical finite element analysis framework for PCHEs in high-temperature nuclear service is recommended.


Author(s):  
Prabin Pathak ◽  
Y. X. Zhang

A simple, accurate and efficient finite element model is developed in ANSYS for numerical modelling of the nonlinear structural behavior of FRP strengthened RC beams under static loading in this paper. Geometric nonlinearity and material non-linear properties of concrete and steel rebar are accounted for this model. Concrete and steel reinforcement are modelled using Solid 65 element and Link 180 element, and FRP and adhesive are modelled using Shell 181element and Solid 45 element. Concrete is modelled using Nitereka and Neal’s model for compression, and isotropic and linear elastic model before cracking with strength gradually reducing to zero after cracking for tension. For steel reinforcement, the elastic perfectly plastic material model is used. FRPs are assumed to be linearly elastic until rupture and epoxy is assumed to be linearly elastic. The new FE model is validated by comparing the computed results with those obtained from experimental studies.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Melissa M. Gibbons ◽  
Xinglai Dang ◽  
Mark Adkins ◽  
Brian Powell ◽  
Philemon Chan

A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic–plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.


2010 ◽  
Vol 455 ◽  
pp. 521-524
Author(s):  
Yong Tang ◽  
Bang Yan Ye ◽  
X.F. Hu ◽  
Qiang Wu

This paper studies drilling force of pore for hard-cutting material based on theoretical and experimental investigation during pore drilling process. A coupled thermo-mechanical finite element model of metal pore drilling process was established. Some key techniques such as material model, chip separation and damage criteria and dynamic mesh self-adapting technology in the finite element simulation of metal cutting process were discussed in details. The paper simulated dynamically the chip formation of the twist drilling process in which rigid plastic material model was selected for workpieces and thermal rigid models for tools. The results indicate that the proposed finite element model is not only correct but also feasible in the prediction of the variations of drilling force and torque with amount of feed.


Sign in / Sign up

Export Citation Format

Share Document