scholarly journals GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3397 ◽  
Author(s):  
Jong Lim ◽  
Woo Shin ◽  
Hyemi Hwang ◽  
Young-Chul Ju ◽  
Suk Ko ◽  
...  

Cut solar cells have received considerable attention recently as they can reduce electrical output degradation when the c-Si solar cells (crystalline-silicon solar cells) are shaded. Cut c-Si solar cells have a lower short-circuit current than normal solar cells and the decrease in short-circuit currents is similar to the shading effect of c-Si solar cells. However, the results of this study’s experiment show that the shadow effect of a c-Si solar cell reduces the V o c (open circuit voltage) in the c-Si solar cell but the V o c does not change when the c-Si solar cell is cut because the amount of incident light does not change. In this paper, the limitations of the electrical power analysis of the cut solar cells were identified when only photo current was considered and the analysis of the electric output of the cut c-Si solar cells was interpreted with a method different from that used in previous analyses. Electrical output was measured when the shaded and cut rates of c-Si solar cells were increased from 0% to 25, 50 and 75%, and a new theoretical model was compared with the experimental results using MATLAB.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


2013 ◽  
Vol 16 (1) ◽  
pp. 48-56
Author(s):  
Vu Ngoc Hoang ◽  
Linh Ngoc Tran ◽  
Lan Truong ◽  
Khoa Thanh Nhat Phan ◽  
Chien Mau Dang ◽  
...  

In this report we present series of experiments during which the short circuit current of mono crystalline silicon solar cell was improved step by step so as a consequence the efficiency was increased. At first, the front contact of solar cell was optimized to reduce the shadow loss and the series resistance. Then surface treatments were prepared by TMAH solution to reduce the total light reflectance and to improve the light trapping effect. Finally, antireflection coatings were deposited to passivate the front surface either by silicon nitride thin layer or to increase the collection probability by indium tin oxide layer, and to reduce the reflectance of light. As a result, solar cells of about 13% have been obtained, with the average open circuit voltage Voc about 527mV, with the fill factor about 68% and the short circuit current about 7.92 mA/cm2 under the irradiation density of 21 mW/cm2.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hyomin Park ◽  
Sung Ju Tark ◽  
Chan Seok Kim ◽  
Sungeun Park ◽  
Young Do Kim ◽  
...  

To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P) gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.


Author(s):  
Robert L. Vittoe ◽  
Tung Ho ◽  
Sudhir Shrestha ◽  
Mangilal Agarwal ◽  
Kody Varahramyan

This paper presents fabrication of copper indium gallium di-selenide (CIGS) solar cells using all solution-based deposition processes. CIGS nanoparticles were synthesized through multi-step chemical process using copper chloride, indium chloride, gallium chloride, and selenium in oleyamine. CIGS thin films were constructed through layer-by-layer (LbL) self-assembly and spray-coating techniques. Chemical-bath-deposition and spray-coating methods were used for cadmium sulfide and zinc oxide film depositions, respectively. Initial thin film solar cell devices exhibited promising 0.3 mA short circuit current and 200 mV open circuit voltage. The solar cells fabricated through the all solution-based processes are cost-effective, thus, have potentials of providing a viable, renewable and sustainable energy source. The proposed processes can further be realized on flexible substrates, which may broaden the applications range for the solar cells.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Do Yun Kim ◽  
Ihsanul Afdi Yunaz ◽  
Shunsuke Kasashima ◽  
Shinsuke Miyajima ◽  
Makoto Konagai

AbstractOptical, electrical and structural properties of silicon films depending on hydrogen flow rate (RH), substrate temperature (TS), and deposition pressure (PD) were investigated. By decreasing RH and increasing TS and PD, the optical band gap (Eopt) of silicon thin films drastically declined from 1.8 to 1.63 eV without a big deterioration in electrical properties. We employed all the investigated Si thin films for p-i-n structured solar cells as absorbers with i-layer thickness of 300 nm. From the measurement of solar cell performances, it was clearly observed that spectral response in long wavelength was enhanced as Eopt of absorber layers decreased. Using the solar cell whose Eopt of i-layer was 1.65 eV, the highest QE at long wavelength with the short circuit current density (Jsc) of 16.34 mA/cm2 was achieved, and open circuit voltage (Voc), fill factor (FF), and conversion efficiency (η) were 0.66 V, 0.57, and 6.13%, respectively.


2015 ◽  
Vol 761 ◽  
pp. 341-346 ◽  
Author(s):  
Ahmad Aizan Zulkefle ◽  
Maslan Zainon ◽  
Zaihasraf Zakaria ◽  
Mohd Ariff Mat Hanafiah ◽  
Nurul Huda Abdul Razak ◽  
...  

This paper presents the performance between silicon germanium (SiGe) and crystalline germanium (Ge) solar cells in terms of their simulated open circuit voltage, short circuit current density, fill factor and efficiency. The PC1D solar cell modeling software has been used to simulate and analyze the performance for both solar cells, and the total thickness is limited to 1μm of both SiGe and Ge solar cells. The Si0.1Ge0.9 thickness is varied from 10nm to 100nm to examine the effect of Si0.1Ge0.9 thickness on SiGe solar cell. The result of simulation exhibits the SiGe solar cell give a better performance compared to Ge solar cell. The efficiency of 9.74% (VOC = 0.48V, JSC = 27.86mA/cm2, FF =0.73) is achieved with Si0.1Ge0.9 layer of 0.1μm in thickness whilst 2.73% (VOC = 0.20V, JSC = 27.31mA/cm2, FF =0.50) efficiency is obtained from Ge solar cell.


Sign in / Sign up

Export Citation Format

Share Document