scholarly journals The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Yiqi Jing ◽  
Yongliang Lai ◽  
Shujia Zhang ◽  
Ruijuan Wang ◽  
Zhuohui Xu ◽  
...  

Polyaniline/Zinc oxide (PANI/ZnO) were prepared using a two-step method, and the morphology and the structure of PANI/ZnO composites were characterized through a scanning electron microscope (SEM) and X-ray diffraction (XRD). Factors such as the content of ZnO, the adsorption time and the mass of the adsorbent, and the kinetic equation of PANI/ZnO as adsorbents for the adsorption of methyl orange solution were studied. The results showed that the adsorption efficiency of methyl orange by polyaniline with the increase of adsorbent mass firstly increased and then decreased. Among the composites with the same quality, PANI composites with 8% ZnO have a better adsorption effect for methyl orange, and the maximum adsorption ratio can reach 69% with the increase of adsorption time at 0.033 g; With the increase of adsorbent mass, the adsorption efficiency of PANI composites with 8% ZnO increased continuously. When the mass increased from 0.033 g to 0.132 g, the adsorption rate increased from 69% to 93%, and the adsorption of the methyl orange solution by PANI/ZnO composites was more in line with the quasi-second-order kinetic equation.

2011 ◽  
Vol 197-198 ◽  
pp. 919-925 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu

Silver (Ag+) doped iron (III) vanadate (FeVO4) samples are prepared by the precipitation method and then characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy(XPS). The photocatalytic activity under visible light is evaluated by photocatalytic degradation of methyl orange (MO) in the solution. The results show that both FeVO4 and Ag+ doped FeVO4 samples are triclinic, the later have different surface morphology, and some needle-shaped materials appear in the later. From XPS, there are more Fe2+ ions in Ag+ doped FeVO4 sample than that in FeVO4 one without Ag+. It indicates that Ag+ doping can increase the density of the surface oxygen vacancies of catalysts, which can act as electron traps promoting the electron-hole separation and then increase the photo-activity. The decoloration rate after Ag+ doping against methyl orange solution can reach about 81%, and be more about 20% than that of pure FeVO4.


2014 ◽  
Vol 1004-1005 ◽  
pp. 962-966
Author(s):  
Lu Sheng Chen ◽  
Huan Shuang Zhang ◽  
Shu Lian Liu ◽  
Wen Hua Song ◽  
Chao Liu ◽  
...  

In this work, samarium and antimony (Sm–Sb) codoped tin oxide (SnO2) films have been successfully prepared on titanium (Ti) substrate by a facile sol gel method. The samples were characterized by X–ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The composite film materials were used as anode for the electro-degradation of methyl orange solution. Two effective factors of electro–catalytic properties namely, the content of Sm in the SnO2 samples and the calcination temperature, have been optimized based on the electro-degradation experiments. A moderately calcination temperature of 873 K and 1.0% Sm doping owned the best performance. The smaller grain sizes and optical band gap of the SnO2 by introduction of the Sm improved electro-catalytic activity.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Zhang Shu ◽  
Shulin Wang

Using the prepared particles of 10 nm–25 nm as magnetic core, we synthesized / composite particles with as the shell by homogeneous precipitation. Their structure and morphology were characterized by X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electronic microscopy (TEM), Fourier transform infrared spectra (FTIR), and vibration-sample magnetometer (VSM). We show that with urea as precipitant transparent and uniform coating of ca.3 nm thick on , particles can be obtained. The composite particles have better dispersivity than the starting materials, and exhibit super-paramagnetic properties and better chemical adsorption ability with saturated magnetization of 33.5 emu/g. Decoloration experiment of methyl orange solution with / composite suggested that the highest decoloration rate was 94.33% when the pH of methyl orange solution was 1.3 and the contact time was 50 minutes. So this kind of / composite particle not only has super-paramagnetic property, but also good ability of chemical adsorption.


2011 ◽  
Vol 356-360 ◽  
pp. 558-564
Author(s):  
Xiao Wei Yuan ◽  
Xue Guo ◽  
Dan Dan Yang ◽  
Li Juan Wang ◽  
Mei Ling Cheng ◽  
...  

Hollow cubic TiO2particles were synthesized using cubic Cu2O particles as hard templates, and the hydrolysis of tetrabutyl titanate (TBOT). The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis spectrometer, respectively. The results show that the prepared TiO2is composed of anatase TiO2, and has a stronger absorption in the range of 300-400nm wavelengths in its UV-Vis spectroscopy. Experiments were carried out using a methyl orange solution as a model to evaluate the photocatalytic activity of hollow cubic TiO2particles. The effects of catalyst dosage, initial concentration and pH of methyl orange solution on the degree of photodegradation have been investigated. It’s found that the hollow cubic TiO2particles have a good photocatalytic property. And the degradation rate of the methyl orange, after methyl orange solution (5mg/L) containing hollow cubic TiO2particles (0.5g/L) is irradiated by 125W ultraviolet light for 120 minutes, is 95%.


2012 ◽  
Vol 554-556 ◽  
pp. 498-501
Author(s):  
Qi Ying Wang ◽  
Xiao Dong Chen ◽  
Jun Ta Zhuang ◽  
Yun Pei Zhou ◽  
Yong Huang ◽  
...  

Mesoporous Al2O3 was synthesized from aluminum nitrate using different surfactants as structure-directing agents. The adsorption capability of prepared Al2O3 was studied in methyl orange solution. The Al2O3 prepared by Tween80-mediated has the best adsorption capability. The surfactant dosage influences the pore structure and adsorption capability of Al2O3, the best Tween80 dosage is 0.3g. Pore size distribution shows that the prepared Al2O3 has mesoporous structure, the pore diameter mainly centers at 1-4nm. For the inner diffusional resistance of the pore canal to achieve adsorption balance, suitable adsorption time is 80 minutes.


2019 ◽  
Author(s):  
Nur Tsalits Fahman Mughni

A Novel catalyst prepared from Indonesia bauxite was used as a catalyst for photo fenton degradation of methyl orange solution. This catalyst is more cheaper than Nafion-based catalyst and more greener than other synthesized catalysts. It is easily prepared from Indonesian natural resources. X-ray diffraction measurements provide structure and mineral compostion of bauxite, while XRF provides information on the composition of Fe by 18% by weight of bauxite mass. The presence of large amounts of Fe in bauxite acts as a catalyst in the decomposition of metyl orange. Testing of photo fenton activity to decompose metyl orange showed that indonesian bauxite had high catalytic activity, was able to decompose 99.4% metyl orange within 40 minutes on irradiation using an 8Watt UVC radiation source


2013 ◽  
Vol 750-752 ◽  
pp. 1397-1400 ◽  
Author(s):  
Li Mei Duan ◽  
Jing Hai Liu ◽  
Xiu Ting Xu ◽  
Ling Xu ◽  
Zong Rui Liu

Applying one-step solvothermal synthesis method, different CdS/TiO2 nanocomposite materials are obtained by changing the ratio of sulfur and titanium sources. The composite structure and morphology are determined by XRD and TEM. Taking the degradation of methyl orange solution as a model reaction, the photocatalytic activity of CdS/TiO2 composite materials is investigated. The results show that the amount of CdS in composite photocatalyst has great effects on the degradation efficiency of methyl orange under the irradiation of sunlight, and the lower pH of reaction system is also needed to sustain the high degradation efficiency for methyl orange.


2012 ◽  
Vol 518-523 ◽  
pp. 775-779 ◽  
Author(s):  
Dong Dong Tan ◽  
De Fu Bi ◽  
Peng Hui Shi ◽  
Shi Hong Xu

The TiO2/NiFe2O4 (TN) composite nanoparticles with different mass ratios of NiFe2O4 to TiO2 were prepared via sol-gel method. X-ray diffraction was used to characterize the phase structure of TN. The results indicated that adulterating a smidgen of NiFe2O4 into the TiO2 (about 0.1%) can promote the phase transformation of TiO2, however, when the doping amount of NiFe2O4 surpasses 1%, the introduction of NiFe2O4 can inhibit the growth of TiO2 crystal grain and reduce the size of TiO2 crystal grain. The degradation experiment of methyl orange solution under UV illumination (253.7 nm) showed that the content of NiFe2O4 in the TN was higher, the photocatalytic activity of TN was worse, and the 0.1% TiO2/NiFe2O4 calcined at 400 °C presented the best photocatalytic activity.


2021 ◽  
Author(s):  
Xianzhen Diao ◽  
Jin XU ◽  
Yufei WANG

Nanometer TiO2 photocatalysts were prepared by the sol–gel method. The catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and other techniques. Methyl orange solution was used for the degradation of the organic material and ultrasonic technology was used to determine the photocatalytic performance of the catalysts. The results show that the photocatalytic performance of the Ni-N-TiO2 is clearly improved under ultrasonic conditions. The TiO2 photocatalytic degradation effect is optimal at a catalyst concentration of 0.3 g/L, an initial concentration of the organic matter of 0.03 mmol/L, a nickel-doping amount of 2 mol %, and a nitrogen-doping amount of 15 mol %. The use of ultrasound technology in combination with photocatalysis has a positive effect and results in a TiO2 degradation rate of methyl orange of 95 % after 3 h.


2011 ◽  
Vol 197-198 ◽  
pp. 807-810
Author(s):  
Li Qin Wang ◽  
Xiang Ni Yang ◽  
Xiu Li Zhao ◽  
Rui Jun Zhang ◽  
Yu Lin Yang

The composites of expanded ghaphite with TiO2(EG/TiO2) have been prepared in the method of precursor mixing, and the optimum preparation conditions have been studied. The morphology and crystal structure of the EG/TiO2composites have been characterized by the means of SEM and XRD. Also their performance of decolorization for methyl orange solution has been researched. The results are shown as follows: the EG/TiO2composites maintain the rich porous and network structure of EG, and a lot of anatase TiO2particles widely distribute on surfaces and in layers of EG. Compared with TiO2sol, taking tetrabutyl titanate as titanium source, the prepared EG/TiO2composites have better performance. Increasing the added amount of tetrabutyl titanate, the decolorization rate of methyl orange solution increases at first, and then decreases. When adding 2 mL tetralbutyl titanate, the decolorization rate is at the peak, up to 98.4%. These results show the composites have excellent performance of decolorization for methyl orange solution. We suppose it is mainly due to the interaction between the adsorption of EG and the degradation of TiO2particles.


Sign in / Sign up

Export Citation Format

Share Document