scholarly journals Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Xiangcao Jiang ◽  
Jiupeng Song ◽  
Fusheng Peng ◽  
Donghong Guo ◽  
Yijin Fang ◽  
...  

Tungsten (W) fiber-reinforced tungsten (Wf/W) composite with ultra-high strength and high-temperature resistance is considered an attractive candidate material for plasma-facing materials (PFM) in future fusion reactors. The main component of Wf/W composite is tungsten wire, which is obtained through powder metallurgy and the drawing process. In this paper, high potassium (K)-doped tungsten wires with 98 ppm of K and 61 ppm of impurities are prepared using traditional and optimized processing technologies, respectively, and a comparative study with conventional K-doped tungsten wires with 83 ppm of K and 80 ppm of impurities is conducted. The high-temperature mechanical properties as well as the microstructure’s evolution of the prepared tungsten wires are investigated. The results show that the high-temperature performance of K-doped tungsten wires is improved by increasing the K content and by simultaneously reducing the impurities. By adopting small compression deformation and low-temperature processing technology, the high-temperature performance of high K-doped tungsten wires can be further improved. A microstructure analysis indicates that the excellent high-temperature performance is attributed to a combination of the small K bubble size, high K bubble number density, and long K bubble string, which are produced through optimization of the processing technology. A study on the processing technology and the performance of tungsten wires with a high K content and a high purity can provide important information regarding Wf/W composites.

Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1971 ◽  
Vol 20 (4) ◽  

Abstract PYROTOOL A has been designed to display high strength and good ductility at temperatures up to 1200 F. It is used for high-temperature tooling, extrusion dies, liners, dummy blocks, forging dies, mandrels, holders, etc. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-47. Producer or source: Carpenter.


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract INCONEL Alloy 722, formerly Inconel W alloy, is a high strength, high-temperature nickel-base alloy responding to age hardening heat treatments for maximum properties. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-100. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1963 ◽  
Vol 12 (6) ◽  

Abstract DURANICKEL Alloy 301 is a wrought, age-hardenable nickel alloy having high strength, high corrosion and heat resistance. It is recommended for springs, diaphrams, bearings, pump and valve parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-83. Producer or source: The International Nickel Company Inc..


Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract SILNIC BRONZE is a copper-nickel-silicon alloy having high strength, high conductivity and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-90. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1995 ◽  
Vol 44 (7) ◽  

Abstract ALUMINUM ALLOY 201.0 is a structural casting alloy available as sand, permanent mold and investment castings. It is used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity are needed. This datasheet provides information on composition, physical properties, and elasticity as well as creep and fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: AL-336. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract ACCURATE METAL is a copper-nickel alloy having high strength, ductility and corrosion resistance. It was especially designed for exacting electronic and electrical applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Cu-207. Producer or source: Connecticut Metals Corporation.


Alloy Digest ◽  
1956 ◽  
Vol 5 (6) ◽  

Abstract DUCTALLOY is a high-carbon ferrous material having high strength, high ductility, toughness and machinability. It is supplied in three grades: pearlitic grade 80, ferritic grade 60, and austenitic grade A50. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-14. Producer or source: American Brake Shoe Company.


Alloy Digest ◽  
1958 ◽  
Vol 7 (5) ◽  

Abstract REVERE No. 430 is an aluminum bronze having high strength, excellent corrosion resistance, and high resistance to sulfuric acid. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-63. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (9) ◽  

Abstract COPPER ALLOY No. 260 is a 70% copper-30% zinc alloy having high strength, excellent ductility, and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-241. Producer or source: Brass mills.


Sign in / Sign up

Export Citation Format

Share Document