scholarly journals Plant-Soil Feedback Effects on Germination and Growth of Native and Non-Native Species Common across Southern California

Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 217
Author(s):  
Manya Singh ◽  
Wallace M. Meyer

Changes in plant assemblages can influence biotic and abiotic soil conditions. These changes can cause plant–soil feedbacks that can inhibit or facilitate plant germination and growth. Here, we contribute to a growing literature examining plant–soil feedbacks in the endangered sage scrub ecosystem by examining the germination and growth of Artemisia californica, the dominant native shrub species in the ecosystem, in soil conditioned by two widespread plant invaders (Brassica nigra, Bromus madritensis ssp. rubens), and the germination and growth of these invasive species in conspecific and heterospecific soils. Our findings suggest that: (i) A. californica soils can limit establishment of some species (B. nigra) but not others (B. madritensis), (ii) A. californica soil conditions reduce growth of all plant species, and (iii) non-natives are negatively impacted by soil microbes, but in some contexts can do better in heterospecific soil. As our findings were often incongruent with other studies that examined interactions among similar species at other sites, we suggest that we are at our infancy of understanding these complex interactions, and that developing a predictive framework for understanding plant soil feedbacks in the sage scrub ecosystem involves understanding how various plant species respond in different soil contexts within the ecosystem.

2004 ◽  
Vol 82 (6) ◽  
pp. 763-773 ◽  
Author(s):  
Heather A Hager ◽  
Rolf D Vinebrooke

Plant species invasions may result from, and cause, changes in the vegetation community and abiotic environment. It is often hypothesized that nonnative plant invaders suppress the diversity of native species. We examined relationships of vegetation and environmental gradients associated with the nonnative invasive wetland plant Lythrum salicaria L. to determine whether L. salicaria invasion is associated with reduced diversity and abundance of resident plant species in the wetland community. Vegetation and environmental variables were surveyed in 10 wetlands defining a gradient of L. salicaria abundance. In addition, relationships among variables were compared between invaded, Lythrum-dominated and uninvaded, Typha-dominated patches within 6 of the 10 invaded wetlands. Contrary to expectations, ordination results showed that plant diversity was higher in invaded than in uninvaded patches. Lythrum salicaria replaced other plant density and biomass on a one-to-one basis. The ordination results generated an unexpected competing set of testable hypotheses regarding whether L. salicaria invades diverse plant communities or enhances plant community diversity.Key words: invasion, Lythrum salicaria, ordination, plant community composition, Typha-dominated marshes, wetlands.


2016 ◽  
Vol 104 (5) ◽  
pp. 1243-1249 ◽  
Author(s):  
Conrad Schittko ◽  
Christian Runge ◽  
Marek Strupp ◽  
Sascha Wolff ◽  
Susanne Wurst

2021 ◽  
Author(s):  
Rutger A. Wilschut ◽  
Mark van Kleunen

Abstract Aims Drought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts affect plant-soil feedbacks is still poorly understood. Plants accumulate species-specific rhizosphere communities, and droughts may have varying impacts across plant species and soil biota. We therefore tested the hypothesis that drought alters plant-soil feedbacks differently among closely related plant species that differ in their preferences for soil moisture. Methods In a two-phase greenhouse experiment, we first conditioned grassland soil with seven Geranium species and, as controls, we conditioned soil with a grass species or left soil unplanted. In the second phase, we grew the Geranium species in conspecific, grass-conditioned and unplanted soil, maintained soil moisture at 5 %, 10 % or 20 % (w/w), and determined biomass responses after 35 days. Results Independent of conditioning, plants showed a weaker performance with decreasing soil moisture. Under the driest conditions, soil conditioning by conspecifics most negatively affected relative root weight in comparison to plants growing in unplanted control soil, while the effects of conspecific conditioning on relative root weights were species-specific when compared to plants grown in grass-conditioned control soil. Conclusions We conclude that decreased soil moisture modified plant-soil feedback effects on biomass allocation, and that these modifications acted in species-specific ways. However, drought effects on plant-soil feedbacks were subtle, and did not affect overall plant performance. Therefore, plant-soil feedback effects on plant performance during a drought event may be limited in comparison with the direct effects of drought.


2019 ◽  
Vol 14 (2) ◽  
pp. 114-122
Author(s):  
Valeriy Anatolyevich Burlutskiy ◽  
Vladimir Nikolaevich Mazurov ◽  
Ivan Evgenievich Osokin ◽  
Aleksandr Fedorovich Peliy ◽  
Polina Sergeevna Semeshkina ◽  
...  

Currently, less than 33% of arable land is used in Meshchovskoye Opolye. Optimizing technology elements of resource-saving development of synanthropic fallow phytocenoses with complex invasion is relevant. The article is devoted to analysis of development of self-organizing phytocenoses with varying invasion degrees and their use on lands temporarily withdrawn from active agricultural use. Field experiments were carried out on postagrogenic gray forest loamy soils in Kaluga Research Institute of Agriculture in 2006-2018. Influence of mineral fertilizers as an optimization element of technology of fallow development was studied using transects and permanent survey sites on the area of 12.0 ha. The reasons for change in productivity and its determining elements in hayfields in autogenous - allogenic phytocenoses were analysed. We established that economic value of plant communities was determined by potential of constituent species and variability of their productivity in years with various environmental conditions. 12 years later phytocenoses become homogeneous and consist of 10-12 main plant species, determining green mass productivity by 75%. Compared to native species invasive plant species have 1.4-2.0 fold higher productivity which accounts for 60% and more productivity of phytocenoses. Transforming role of Erigeron canadensis L., Lupinus polyphyllus Lindl. and Solidago gigantea Ait. on their expansion into aboriginal herb (share in mowed mass - 40% or more) communities was shown; their high adaptive potential for ecological-soil conditions of Meshchovskoye Opolye (center of Nonchernozem Zone of Russia) was established. Application of mineral fertilizers (P40K90) in the secondary Trifolium medium phytocenoses (more than 40%) contributed to 2.4-fold increase in its productivity (from 1.38 to 3.29 kg/m2) and increased productivity stability by 60%, reducing low-value species in crop structure by 1.6 times. The total area of cenopopulations increased by 10.4-21.5%, yields - from 2.31 to 4.41 kg/m2.


2011 ◽  
Vol 4 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Nicholas R. Jordan ◽  
Diane L. Larson ◽  
Sheri C. Huerd

AbstractDiversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial “legacies” of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of soil conditions needed for efficient establishment of diversified grasslands.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jean Trap ◽  
Patricia Mahafaka Ranoarisoa ◽  
Usman Irshad ◽  
Claude Plassard

Plants evolve complex interactions with diverse soil mutualist organisms to enhance P mobilization from the soil. These strategies are particularly important when P is poorly available. It is still unclear how the soil P source (e.g., mineral P versus recalcitrant organic P) and its mobility in the soil (high or low) affect soil mutualist biological (ectomycorrhizal fungi, bacteria and bacterial-feeding nematodes) richness—plant P acquisition relationships. Using a set of six microcosm experiments conducted in growth chamber across contrasting P situations, we tested the hypothesis that the relationship between the increasing addition of soil mutualist organisms in the rhizosphere of the plant and plant P acquisition depends on P source and mobility. The highest correlation (R2 = 0.70) between plant P acquisition with soil rhizosphere biological richness was found in a high P-sorbing soil amended with an organic P source. In the five other situations, the relationships became significant either in soil conditions, with or without mineral P addition, or when the P source was supplied as organic P in the absence of soil, although with a low correlation coefficient (0.09 < R2 < 0.15). We thus encourage the systematic and careful consideration of the form and mobility of P in the experimental trials that aim to assess the role of biological complexity on plant P nutrition.


Sign in / Sign up

Export Citation Format

Share Document