scholarly journals Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 566
Author(s):  
Leandro A. Do Nascimento ◽  
Cristian Pérez-Granados ◽  
Karen H. Beard

Nighttime studies are underrepresented in ecological research. Even well-known behaviors, such as the loud call of howler monkeys, are rarely studied at night. Our goal was to help fill this knowledge gap by studying the 24 h vocal behavior of the Guianan red howler monkey (Alouatta macconnelli) and to compare the acoustic structures of howling bouts made during the day to those made at night. We used passive acoustic monitoring coupled with automatic acoustic detection to study three groups of howlers over three months in the Viruá National Park, Roraima, Brazil. The automatic classifier we built detected 171 howling bouts with a 42% recall rate and 100% precision. Though primarily diurnal, howlers vocalized mainly at night. Greater vocal activity before nautical twilight might be associated with territorial and resource defense behaviors, with howlers calling from roosting sites before starting their daily routines. We also found that during the day, howling bouts were longer and had lower harmonic-to-noise ratios, lower frequencies, and more symmetric energy distributions than bouts at night. Our study adds to growing evidence that passive acoustic monitoring and automatic acoustic detection can be used to study primates and improve our understanding of their vocal behavior.

2021 ◽  
Vol 14 ◽  
pp. 194008292110582
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Chaco Chachalaca ( Ortalis canicollis) is a declining Neotropical bird, for which our current knowledge about its natural history is very limited. Here, we evaluated for first time the utility of passive acoustic monitoring, coupled with automated signal recognition software, to monitor the Chaco Chachalaca, described the vocal behavior of the species across the diel and seasonal cycle patterns, and proposed an acoustic monitoring protocol to minimize error in the estimation of the vocal activity rate. We recorded over a complete annual cycle at three sites in the Brazilian Pantanal. The species was detected on 99% of the monitoring days, proving that this technique is a reliable method for detecting the presence of the species. Chaco Chachalaca was vocally active throughout the day and night, but its diel activity pattern peaked between 0500 and 0900. The breeding season of Chaco Chachalaca in the Brazilian Pantanal, based on seasonal changes in vocal activity, seems to occur during the last months of the dry season, with a peak in vocal activity between August and October. Our results could guide future surveys aiming to detect the presence of the species, both using traditional or acoustic surveys, or to evaluate changes in population abundance using passive acoustic monitoring, for which recorders should be left in the field for a minimum period of nine days to obtain a low-error estimate of the vocal activity of the species. Our results suggest that passive acoustic monitoring might be useful, as a complementary tool to field studies, for monitoring other cracids, a family with several threatened species that are reluctant to human presence.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 402 ◽  
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Current knowledge regarding the vocal behavior in tropical non-passerines is very limited. Here, we employed passive acoustic monitoring to study the vocal activity of the white-tipped dove (Leptotila verreauxi) at three sites over a year in the Brazilian Pantanal. The diel pattern of vocal activity showed a bimodal pattern, with significantly higher vocal activity after sunrise than during the other hours of the day, in agreement with prior studies on this species and other members of Columbidae. The species was vocally active throughout the year, but vocal activity was maximum during May-June and lowest during January-February. Relative air humidity was positively associated with vocal activity, which may be related to the improvement of sound transmission under more humid conditions, but it could also be related to foraging efficiency due to a higher availability of invertebrates on wetter days. Vocal activity was not related to the mean air temperature or daily rainfall. Acoustic monitoring proved to be a useful tool for monitoring this shy forest species, for which a minimum number of three monitoring days was needed to detect a reliable vocal activity rate. Future studies should evaluate its use for monitoring other species of doves and pigeons that are secretive or threatened.


2021 ◽  
pp. e01710
Author(s):  
Dana S. Reid ◽  
Connor M. Wood ◽  
Sheila A. Whitmore ◽  
William J. Berigan ◽  
John J. Keane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document