scholarly journals Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 649 ◽  
Author(s):  
Nada M. Elshennawy ◽  
Dina M. Ibrahim

Pneumonia is a contagious disease that causes ulcers of the lungs, and is one of the main reasons for death among children and the elderly in the world. Several deep learning models for detecting pneumonia from chest X-ray images have been proposed. One of the extreme challenges has been to find an appropriate and efficient model that meets all performance metrics. Proposing efficient and powerful deep learning models for detecting and classifying pneumonia is the main purpose of this work. In this paper, four different models are developed by changing the used deep learning method; two pre-trained models, ResNet152V2 and MobileNetV2, a Convolutional Neural Network (CNN), and a Long Short-Term Memory (LSTM). The proposed models are implemented and evaluated using Python and compared with recent similar research. The results demonstrate that our proposed deep learning framework improves accuracy, precision, F1-score, recall, and Area Under the Curve (AUC) by 99.22%, 99.43%, 99.44%, 99.44%, and 99.77%, respectively. As clearly illustrated from the results, the ResNet152V2 model outperforms other recently proposed works. Moreover, the other proposed models—MobileNetV2, CNN, and LSTM-CNN—achieved results with more than 91% in accuracy, recall, F1-score, precision, and AUC, and exceed the recently introduced models in the literature.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

Abstract Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85), and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73–0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in Centre 2. Conclusions This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juhong Namgung ◽  
Siwoon Son ◽  
Yang-Sae Moon

In recent years, cyberattacks using command and control (C&C) servers have significantly increased. To hide their C&C servers, attackers often use a domain generation algorithm (DGA), which automatically generates domain names for the C&C servers. Accordingly, extensive research on DGA domain detection has been conducted. However, existing methods cannot accurately detect continuously generated DGA domains and can easily be evaded by an attacker. Recently, long short-term memory- (LSTM-) based deep learning models have been introduced to detect DGA domains in real time using only domain names without feature extraction or additional information. In this paper, we propose an efficient DGA domain detection method based on bidirectional LSTM (BiLSTM), which learns bidirectional information as opposed to unidirectional information learned by LSTM. We further maximize the detection performance with a convolutional neural network (CNN) + BiLSTM ensemble model using Attention mechanism, which allows the model to learn both local and global information in a domain sequence. Experimental results show that existing CNN and LSTM models achieved F1-scores of 0.9384 and 0.9597, respectively, while the proposed BiLSTM and ensemble models achieved higher F1-scores of 0.9618 and 0.9666, respectively. In addition, the ensemble model achieved the best performance for most DGA domain classes, enabling more accurate DGA domain detection than existing models.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kazi Nabiul Alam ◽  
Md Shakib Khan ◽  
Abdur Rab Dhruba ◽  
Mohammad Monirujjaman Khan ◽  
Jehad F. Al-Amri ◽  
...  

The COVID-19 pandemic has had a devastating effect on many people, creating severe anxiety, fear, and complicated feelings or emotions. After the initiation of vaccinations against coronavirus, people’s feelings have become more diverse and complex. Our aim is to understand and unravel their sentiments in this research using deep learning techniques. Social media is currently the best way to express feelings and emotions, and with the help of Twitter, one can have a better idea of what is trending and going on in people’s minds. Our motivation for this research was to understand the diverse sentiments of people regarding the vaccination process. In this research, the timeline of the collected tweets was from December 21 to July21. The tweets contained information about the most common vaccines available recently from across the world. The sentiments of people regarding vaccines of all sorts were assessed using the natural language processing (NLP) tool, Valence Aware Dictionary for sEntiment Reasoner (VADER). Initializing the polarities of the obtained sentiments into three groups (positive, negative, and neutral) helped us visualize the overall scenario; our findings included 33.96% positive, 17.55% negative, and 48.49% neutral responses. In addition, we included our analysis of the timeline of the tweets in this research, as sentiments fluctuated over time. A recurrent neural network- (RNN-) oriented architecture, including long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM), was used to assess the performance of the predictive models, with LSTM achieving an accuracy of 90.59% and Bi-LSTM achieving 90.83%. Other performance metrics such as precision,, F1-score, and a confusion matrix were also used to validate our models and findings more effectively. This study improves understanding of the public’s opinion on COVID-19 vaccines and supports the aim of eradicating coronavirus from the world.


2021 ◽  
pp. 303-312
Author(s):  
Siddharth Gupta ◽  
Palak Aggarwal ◽  
Sumeshwar Singh ◽  
Shiv Ashish Dhondiyal ◽  
Manisha Aeri ◽  
...  

2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document