scholarly journals NanoChest-Net: A Simple Convolutional Network for Radiological Studies Classification

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 775
Author(s):  
Juan Eduardo Luján-García ◽  
Yenny Villuendas-Rey ◽  
Itzamá López-Yáñez ◽  
Oscar Camacho-Nieto ◽  
Cornelio Yáñez-Márquez

The new coronavirus disease (COVID-19), pneumonia, tuberculosis, and breast cancer have one thing in common: these diseases can be diagnosed using radiological studies such as X-rays images. With radiological studies and technology, computer-aided diagnosis (CAD) results in a very useful technique to analyze and detect abnormalities using the images generated by X-ray machines. Some deep-learning techniques such as a convolutional neural network (CNN) can help physicians to obtain an effective pre-diagnosis. However, popular CNNs are enormous models and need a huge amount of data to obtain good results. In this paper, we introduce NanoChest-net, which is a small but effective CNN model that can be used to classify among different diseases using images from radiological studies. NanoChest-net proves to be effective in classifying among different diseases such as tuberculosis, pneumonia, and COVID-19. In two of the five datasets used in the experiments, NanoChest-net obtained the best results, while on the remaining datasets our model proved to be as good as baseline models from the state of the art such as the ResNet50, Xception, and DenseNet121. In addition, NanoChest-net is useful to classify radiological studies on the same level as state-of-the-art algorithms with the advantage that it does not require a large number of operations.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Aysen Degerli ◽  
Mete Ahishali ◽  
Mehmet Yamac ◽  
Serkan Kiranyaz ◽  
Muhammad E. H. Chowdhury ◽  
...  

AbstractComputer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human–machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity.


Author(s):  
Arshia Rehman ◽  
Saeeda Naz ◽  
Ahmed Khan ◽  
Ahmad Zaib ◽  
Imran Razzak

AbstractBackgroundCoronavirus disease (COVID-19) is an infectious disease caused by a new virus. Exponential growth is not only threatening lives, but also impacting businesses and disrupting travel around the world.AimThe aim of this work is to develop an efficient diagnosis of COVID-19 disease by differentiating it from viral pneumonia, bacterial pneumonia and healthy cases using deep learning techniques.MethodIn this work, we have used pre-trained knowledge to improve the diagnostic performance using transfer learning techniques and compared the performance different CNN architectures.ResultsEvaluation results using K-fold (10) showed that we have achieved state of the art performance with overall accuracy of 98.75% on the perspective of CT and X-ray cases as a whole.ConclusionQuantitative evaluation showed high accuracy for automatic diagnosis of COVID-19. Pre-trained deep learning models develop in this study could be used early screening of coronavirus, however it calls for extensive need to CT or X-rays dataset to develop a reliable application.


Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


2021 ◽  
Vol 69 ◽  
pp. 102914
Author(s):  
Raouia Mokni ◽  
Norhene Gargouri ◽  
Alima Damak ◽  
Dorra Sellami ◽  
Wiem Feki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document