scholarly journals A Machine Learning Application to Predict Early Lung Involvement in Scleroderma: A Feasibility Evaluation

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1880
Author(s):  
Giuseppe Murdaca ◽  
Simone Caprioli ◽  
Alessandro Tonacci ◽  
Lucia Billeci ◽  
Monica Greco ◽  
...  

Introduction: Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous system involvement has recently been demonstrated, although actual lung involvement is considered the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests are not sensitive enough to be used for screening purposes, thus they should be flanked by other clinical examinations; however, this would lead to a risk of overtesting, with considerable costs for the health system and an unnecessary burden for the patients. To this extent, Machine Learning (ML) algorithms could represent a useful add-on to the current clinical practice for diagnostic purposes and could help retrieve the most useful exams to be carried out for diagnostic purposes. Method: Here, we retrospectively collected high resolution computed tomography, pulmonary function tests, esophageal pH impedance tests, esophageal manometry and reflux disease questionnaires of 38 patients with SSc, applying, with R, different supervised ML algorithms, including lasso, ridge, elastic net, classification and regression trees (CART) and random forest to estimate the most important predictors for pulmonary involvement from such data. Results: In terms of performance, the random forest algorithm outperformed the other classifiers, with an estimated root-mean-square error (RMSE) of 0.810. However, this algorithm was seen to be computationally intensive, leaving room for the usefulness of other classifiers when a shorter response time is needed. Conclusions: Despite the notably small sample size, that could have prevented obtaining fully reliable data, the powerful tools available for ML can be useful for predicting early lung involvement in SSc patients. The use of predictors coming from spirometry and pH impedentiometry together might perform optimally for predicting early lung involvement in SSc.

Diagnostics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Joshua Gawlitza ◽  
Timo Sturm ◽  
Kai Spohrer ◽  
Thomas Henzler ◽  
Ibrahim Akin ◽  
...  

Introduction: Quantitative computed tomography (qCT) is an emergent technique for diagnostics and research in patients with chronic obstructive pulmonary disease (COPD). qCT parameters demonstrate a correlation with pulmonary function tests and symptoms. However, qCT only provides anatomical, not functional, information. We evaluated five distinct, partial-machine learning-based mathematical models to predict lung function parameters from qCT values in comparison with pulmonary function tests. Methods: 75 patients with diagnosed COPD underwent body plethysmography and a dose-optimized qCT examination on a third-generation, dual-source CT with inspiration and expiration. Delta values (inspiration—expiration) were calculated afterwards. Four parameters were quantified: mean lung density, lung volume low-attenuated volume, and full width at half maximum. Five models were evaluated for best prediction: average prediction, median prediction, k-nearest neighbours (kNN), gradient boosting, and multilayer perceptron. Results: The lowest mean relative error (MRE) was calculated for the kNN model with 16%. Similar low MREs were found for polynomial regression as well as gradient boosting-based prediction. Other models led to higher MREs and thereby worse predictive performance. Beyond the sole MRE, distinct differences in prediction performance, dependent on the initial dataset (expiration, inspiration, delta), were found. Conclusion: Different, partially machine learning-based models allow the prediction of lung function values from static qCT parameters within a reasonable margin of error. Therefore, qCT parameters may contain more information than we currently utilize and can potentially augment standard functional lung testing.


2009 ◽  
Vol 44 (12) ◽  
pp. 1226-1234 ◽  
Author(s):  
Serena Panigada ◽  
Angelo Ravelli ◽  
Michela Silvestri ◽  
Claudio Granata ◽  
Silvia Magni-Manzoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document