scholarly journals The Role of Structure MRI in Diagnosing Autism

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 165
Author(s):  
Mohamed T. Ali ◽  
Yaser ElNakieb ◽  
Ahmed Elnakib ◽  
Ahmed Shalaby ◽  
Ali Mahmoud ◽  
...  

This study proposes a Computer-Aided Diagnostic (CAD) system to diagnose subjects with autism spectrum disorder (ASD). The CAD system identifies morphological anomalies within the brain regions of ASD subjects. Cortical features are scored according to their contribution in diagnosing a subject to be ASD or typically developed (TD) based on a trained machine-learning (ML) model. This approach opens the hope for developing a new CAD system for early personalized diagnosis of ASD. We propose a framework to extract the cerebral cortex from structural MRI as well as identifying the altered areas in the cerebral cortex. This framework consists of the following five main steps: (i) extraction of cerebral cortex from structural MRI; (ii) cortical parcellation to a standard atlas; (iii) identifying ASD associated cortical markers; (iv) adjusting feature values according to sex and age; (v) building tailored neuro-atlases to identify ASD; and (vi) artificial neural networks (NN) are trained to classify ASD. The system is tested on the Autism Brain Imaging Data Exchange (ABIDE I) sites achieving an average balanced accuracy score of 97±2%. This paper demonstrates the ability to develop an objective CAD system using structure MRI and tailored neuro-atlases describing specific developmental patterns of the brain in autism.

2021 ◽  
Author(s):  
Pavithra Elumalai ◽  
Yasharth Yadav ◽  
Nitin Williams ◽  
Emil Saucan ◽  
Jürgen Jost ◽  
...  

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders that pose a significant global health burden. Measures from graph theory have been used to characterise ASD-related changes in resting-state fMRI functional connectivity networks (FCNs), but recently developed geometry-inspired measures have not been applied so far. In this study, we applied geometry-inspired graph Ricci curvatures to investigate ASD-related changes in resting-state fMRI FCNs. To do this, we applied Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and healthy controls (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We performed these comparisons at the brain-wide level as well as at the level of individual brain regions, and further, determined the behavioral relevance of region-specific differences with Neurosynth meta-analysis decoding. We found brain-wide ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures. For Forman-Ricci curvature, these differences were distributed across 83 of the 200 brain regions studied, and concentrated within the Default Mode, Somatomotor and Ventral Attention Network. Meta-analysis decoding identified the brain regions showing curvature differences as involved in social cognition, memory, language and movement. Notably, comparison with results from previous non-invasive stimulation (TMS/tDCS) experiments revealed that the set of brain regions showing curvature differences overlapped with the set of brain regions whose stimulation resulted in positive cognitive or behavioural outcomes in ASD patients. These results underscore the utility of geometry-inspired graph Ricci curvatures in characterising disease-related changes in ASD, and possibly, other neurodevelopmental disorders.


2016 ◽  
Author(s):  
Xin Di ◽  
Bharat B Biswal

Background: Males are more likely to suffer from autism spectrum disorder (ASD) than females. As to whether females with ASD have similar brain alterations remain an open question. The current study aimed to examine sex-dependent as well as sex-independent alterations in resting-state functional connectivity in individuals with ASD compared with typically developing (TD) individuals. Method: Resting-state functional MRI data were acquired from the Autism Brain Imaging Data Exchange (ABIDE). Subjects between 6 to 20 years of age were included for analysis. After matching the intelligence quotient between groups for each dataset, and removing subjects due to excessive head motion, the resulting effective sample contained 28 females with ASD, 49 TD females, 129 males with ASD, and 141 TD males, with a two (diagnosis) by two (sex) design. Functional connectivity among 153 regions of interest (ROIs) comprising the whole brain was computed. Two by two analysis of variance was used to identify connectivity that showed diagnosis by sex interaction or main effects of diagnosis. Results: The main effects of diagnosis were found mainly between visual cortex and other brain regions, indicating sex-independent connectivity alterations. We also observed two connections whose connectivity showed diagnosis by sex interaction between the precuneus and medial cerebellum as well as the precunes and dorsal frontal cortex. While males with ASD showed higher connectivity in these connections compared with TD males, females with ASD had lower connectivity than their counterparts. Conclusions: Both sex-dependent and sex-independent functional connectivity alterations are present in ASD.


2021 ◽  
Author(s):  
Fatima zahra Benabdallah ◽  
Ahmed Drissi El Maliani ◽  
Dounia Lotfi ◽  
Rachid Jennane ◽  
Mohammed El hassouni

Abstract Autism spectrum disorder (ASD) is theoretically characterized by alterations in functional connectivity between brain regions. Many works presented approaches to determine informative patterns that help to predict autism from typical development. However, most of the proposed pipelines are not specifically designed for the autism problem, i.e they do not corroborate with autism theories about functional connectivity. In this paper, we propose a framework that takes into account the properties of local connectivity and long range under-connectivity in the autistic brain. The originality of the proposed approach is to adopt elimination as a technique in order to well emerge the autistic brain connectivity alterations, and show how they contribute to differentiate ASD from controls. Experimental results conducted on the large multi-site Autism Brain Imaging Data Exchange (ABIDE) show that our approach provides accurate prediction up to 70% and succeeds to prove the existence of deficits in the long-range connectivity in the ASD subjects brains.


2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Marcello Zanghieri ◽  
Giulia Menichetti ◽  
Alessandra Retico ◽  
Sara Calderoni ◽  
Gastone Castellani ◽  
...  

Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions characterized by impairments in social interaction and communication and restricted patterns of behavior, interests, and activities. Although the etiopathogenesis of idiopathic ASD has not been fully elucidated, compelling evidence suggests an interaction between genetic liability and environmental factors in producing early alterations of structural and functional brain development that are detectable by magnetic resonance imaging (MRI) at the group level. This work shows the results of a network-based approach to characterize not only variations in the values of the extracted features but also in their mutual relationships that might reflect underlying brain structural differences between autistic subjects and healthy controls. We applied a network-based analysis on sMRI data from the Autism Brain Imaging Data Exchange I (ABIDE-I) database, containing 419 features extracted with FreeSurfer software. Two networks were generated: one from subjects with autistic disorder (AUT) (DSM-IV-TR), and one from typically developing controls (TD), adopting a subsampling strategy to overcome class imbalance (235 AUT, 418 TD). We compared the distribution of several node centrality measures and observed significant inter-class differences in averaged centralities. Moreover, a single-node analysis allowed us to identify the most relevant features that distinguished the groups.


BJPsych Open ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
William Snyder ◽  
Vanessa Troiani

Background Brain regions are functionally diverse, and a given region may engage in a variety of tasks. This functional diversity of brain regions may be one factor that has prevented the finding of consistent biomarkers for brain disorders such as autism spectrum disorder (ASD). Thus, methods to characterise brain regions would help to determine how functional abnormalities contribute to affected behaviours. Aims As the first illustration of the meta-analytic behavioural profiling procedure, we evaluated how the regions with disrupted connectivity in ASD contributed to various behaviours. Method Connectivity abnormalities were determined from a published degree centrality group comparison based on functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange. Using BrainMap's database of task-based neuroimaging studies, behavioural profiles were created for abnormally connected regions by relating these regions to tasks activating them. Results Hyperconnectivity in ASD brains was significantly related to memory, attention, reasoning, social, execution and speech behaviours. Hypoconnectivity was related to vision, execution and speech behaviours. Conclusions The procedure outlines the first clinical neuroimaging application of a behavioural profiling method that estimates the functional diversity of brain regions, allowing for the relation of abnormal functional connectivity to diagnostic criteria. Behavioural profiling and the computational insights it provides can facilitate better understanding of the functional manifestations of various disorders, including ASD.


2018 ◽  
Vol 1 ◽  
Author(s):  
Yoed N. Kenett ◽  
Roger E. Beaty ◽  
John D. Medaglia

AbstractRumination and impaired inhibition are considered core characteristics of depression. However, the neurocognitive mechanisms that contribute to these atypical cognitive processes remain unclear. To address this question, we apply a computational network control theory approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how network control theory relates to individual differences in subclinical depression. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that subclinical depression is negatively related to higher integration abilities in the right anterior insula, replicating and extending previous studies implicating atypical switching between the default mode and Executive Control Networks in depression. We also find that subclinical depression is related to the ability to “drive” the brain system into easy to reach neural states in several brain regions, including the bilateral lingual gyrus and lateral occipital gyrus. These findings highlight brain regions less known in their role in depression, and clarify their roles in driving the brain into different neural states related to depression symptoms.


2020 ◽  
Author(s):  
Bahar Tunçgenç ◽  
Carolyn Koch ◽  
Amira Herstic ◽  
Inge-Marie Eigsti ◽  
Stewart Mostofsky

AbstractMimicry facilitates social bonding throughout the lifespan. Mimicry impairments in autism spectrum conditions (ASC) are widely reported, including differentiation of the brain networks associated with its social bonding and learning functions. This study examined associations between volumes of brain regions associated with social bonding versus procedural skill learning, and mimicry of gestures during a naturalistic interaction in ASC and neurotypical (NT) children. Consistent with predictions, results revealed reduced mimicry in ASC relative to the NT children. Mimicry frequency was negatively associated with autism symptom severity. Mimicry was predicted predominantly by the volume of procedural skill learning regions in ASC, and by bonding regions in NT. Further, bonding regions contributed significantly less to mimicry in ASC than in NT, while the contribution of learning regions was not different across groups. These findings suggest that associating mimicry with skill learning, rather than social bonding, may partially explain observed communication difficulties in ASC.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kazuhiko Sawada ◽  
Shiori Kamiya ◽  
Ichio Aoki

Prenatal and neonatal exposure to valproic acid (VPA) is associated with human autism spectrum disorder (ASD) and can alter the development of several brain regions, such as the cerebral cortex, cerebellum, and amygdala. Neonatal VPA exposure induces ASD-like behavioral abnormalities in a gyrencephalic mammal, ferret, but it has not been evaluated in brain regions other than the cerebral cortex in this animal. This study aimed to facilitate a comprehensive understanding of brain abnormalities induced by developmental VPA exposure in ferrets. We examined gross structural changes in the hippocampus and tracked proliferative cells by 5-bromo-2-deoxyuridine (BrdU) labeling following VPA administration to ferret infants on postnatal days (PDs) 6 and 7 at 200 μg/g of body weight. Ex vivo short repetition time/time to echo magnetic resonance imaging (MRI) with high spatial resolution at 7-T was obtained from the fixed brain of PD 20 ferrets. The hippocampal volume estimated using MRI-based volumetry was not significantly different between the two groups of ferrets, and optical comparisons on coronal magnetic resonance images revealed no differences in gross structures of the hippocampus between VPA-treated and control ferrets. BrdU-labeled cells were observed throughout the hippocampus of both two groups at PD 20. BrdU-labeled cells were immunopositive for Sox2 (>70%) and almost immunonegative for NeuN, S100 protein, and glial fibrillary acidic protein. BrdU-labeled Sox2-positive progenitors were abundant, particularly in the subgranular layer of the dentate gyrus (DG), and were denser in VPA-treated ferrets. When BrdU-labeled Sox2-positive progenitors were examined at 2 h after the second VPA administration on PD 7, their density in the granular/subgranular layer and hilus of the DG was significantly greater in VPA-treated ferrets compared to controls. The findings suggest that VPA exposure to ferret infants facilitates the proliferation of DG progenitors, supplying excessive progenitors for hippocampal adult neurogenesis to the subgranular layer.


2019 ◽  
Author(s):  
Jack Adamek ◽  
Yu Luo ◽  
Joshua Ewen

The chapters in this Handbook reveal the breadth of brilliant imaging and analysis techniques designed to fulfill the mandate of cognitive neuroscience: to understand how anatomical structures and physiological processes in the brain cause typical and atypical behavior. Yet merely producing data from the latest imaging method is insufficient to truly achieve this goal. We also need a mental toolbox that contains methods of inference that allow us to derive true scientific explanation from these data. Causal inference is not easy in the human brain, where we are limited primarily to observational data and our methods of experimental perturbation in the service of causal explanation are limited. As a case study, we reverse engineer one of the most influential accounts of a neuropsychiatric disorder that is derived from observational imaging data: the connectivity theories of autism spectrum disorder (ASD). We take readers through an approach of first considering all possible causal paths that are allowed by preliminary imaging-behavioral correlations. By progressively sharpening the specificity of the measures and brain/behavioral constructs, we iteratively chip away at this space of allowable causal paths, like the sculptor chipping away the excess marble to reveal the statue. To assist in this process, we consider how current imaging methods that are lumped together under the rubric of “connectivity” may actually offer a differentiated set of connectivity constructs that can more specifically relate notions of information transmission in the mind to the physiology of the brain.


2021 ◽  
Author(s):  
Zhiqiang Sha ◽  
Dick Schijven ◽  
Clyde Francks

AbstractAutism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores (PRS) for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. PRS for the two disorders were positively correlated (r=0.08, p=7.13×10−50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each PRS was associated with multivariate brain asymmetry after adjusting for sex, ASD PRS r=0.03, p=2.17×10−9, schizophrenia PRS r=0.04, p=2.61×10−11, but the multivariate patterns were mostly distinct for the two PRS, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both PRS were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risk for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies.


Sign in / Sign up

Export Citation Format

Share Document