scholarly journals Background Invariant Faster Motion Modeling for Drone Action Recognition

Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 87
Author(s):  
Ketan Kotecha ◽  
Deepak Garg ◽  
Balmukund Mishra ◽  
Pratik Narang ◽  
Vipual Kumar Mishra

Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic technology to solve multiple surveillance problems in remote areas. One of the fundamental challenges in recognizing crowd monitoring videos’ human action is the precise modeling of an individual’s motion feature. Most state-of-the-art methods heavily rely on optical flow for motion modeling and representation, and motion modeling through optical flow is a time-consuming process. This article underlines this issue and provides a novel architecture that eliminates the dependency on optical flow. The proposed architecture uses two sub-modules, FMFM (faster motion feature modeling) and AAR (accurate action recognition), to accurately classify the aerial surveillance action. Another critical issue in aerial surveillance is a deficiency of the dataset. Out of few datasets proposed recently, most of them have multiple humans performing different actions in the same scene, such as a crowd monitoring video, and hence not suitable for directly applying to the training of action recognition models. Given this, we have proposed a novel dataset captured from top view aerial surveillance that has a good variety in terms of actors, daytime, and environment. The proposed architecture has shown the capability to be applied in different terrain as it removes the background before using the action recognition model. The proposed architecture is validated through the experiment with varying investigation levels and achieves a remarkable performance of 0.90 validation accuracy in aerial action recognition.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Weihua Zhang ◽  
Yi Zhang ◽  
Chaobang Gao ◽  
Jiliu Zhou

This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced dynamic time warping (DTW) algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve computational performance without reducing accuracy is induced. The main contributions of this study include (1) a joint spatial-temporal multiresolution optical flow computation method which can keep encoding more informative motion information than recent proposed methods, (2) an enhanced DTW method to improve temporal consistence of motion in action recognition, and (3) coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high recognition accuracy is achieved on different action databases like Weizmann database and KTH database.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shaoping Zhu ◽  
Limin Xia

A novel method based on hybrid feature is proposed for human action recognition in video image sequences, which includes two stages of feature extraction and action recognition. Firstly, we use adaptive background subtraction algorithm to extract global silhouette feature and optical flow model to extract local optical flow feature. Then we combine global silhouette feature vector and local optical flow feature vector to form a hybrid feature vector. Secondly, in order to improve the recognition accuracy, we use an optimized Multiple Instance Learning algorithm to recognize human actions, in which an Iterative Querying Heuristic (IQH) optimization algorithm is used to train the Multiple Instance Learning model. We demonstrate that our hybrid feature-based action representation can effectively classify novel actions on two different data sets. Experiments show that our results are comparable to, and significantly better than, the results of two state-of-the-art approaches on these data sets, which meets the requirements of stable, reliable, high precision, and anti-interference ability and so forth.


2020 ◽  
Vol 14 (6) ◽  
pp. 378-390
Author(s):  
Cheng Peng ◽  
Haozhi Huang ◽  
Ah-Chung Tsoi ◽  
Sio-Long Lo ◽  
Yun Liu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hong-bin Tu ◽  
Li-min Xia ◽  
Zheng-wu Wang

Human complex action recognition is an important research area of the action recognition. Among various obstacles to human complex action recognition, one of the most challenging is to deal with self-occlusion, where one body part occludes another one. This paper presents a new method of human complex action recognition, which is based on optical flow and correlated topic model (CTM). Firstly, the Markov random field was used to represent the occlusion relationship between human body parts in terms of an occlusion state variable. Secondly, the structure from motion (SFM) is used for reconstructing the missing data of point trajectories. Then, we can extract the key frame based on motion feature from optical flow and the ratios of the width and height are extracted by the human silhouette. Finally, we use the topic model of correlated topic model (CTM) to classify action. Experiments were performed on the KTH, Weizmann, and UIUC action dataset to test and evaluate the proposed method. The compared experiment results showed that the proposed method was more effective than compared methods.


2014 ◽  
Author(s):  
Karla Brkić ◽  
Srđan Rašić ◽  
Axel Pinz ◽  
Siniša Šegvić ◽  
Zoran Kalafatić

2013 ◽  
Vol 373-375 ◽  
pp. 1188-1191
Author(s):  
Ju Zhong ◽  
Hua Wen Liu ◽  
Chun Li Lin

The extraction methods of both the shape feature based on Fourier descriptors and the motion feature in time domain were introduced. These features were fused to get a hybrid feature which had higher distinguish ability. This combined representation was used for human action recognition. The experimental results show the proposed hybrid feature has efficient recognition performance in the Weizmann action database .


Sign in / Sign up

Export Citation Format

Share Document