scholarly journals A Model for Tacit Communication in Collaborative Human-UAV Search-and-Rescue

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1027
Author(s):  
Vijeth Hebbar ◽  
Cédric Langbort

Tacit communication can be exploited in human robot interaction (HRI) scenarios to achieve desirable outcomes. This paper models a particular search and rescue (SAR) scenario as a modified asymmetric rendezvous game, where limited signaling capabilities are present between the two players—rescuer and rescuee. We model our situation as a co-operative Stackelberg signaling game, where the rescuer acts as a leader in signaling its intent to the rescuee. We present an efficient game-theoretic approach to obtain the optimal signaling policy to be employed by the rescuer. We then robustify this approach to uncertainties in the rescue topology and deviations in rescuee behavior. The paper thus introduces a game-theoretic framework to model an HRI scenario with implicit communication capacity.

1982 ◽  
Vol 55 (3) ◽  
pp. 367 ◽  
Author(s):  
Carl Alan Batlin ◽  
Susan Hinko

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maya Diamant ◽  
Shoham Baruch ◽  
Eias Kassem ◽  
Khitam Muhsen ◽  
Dov Samet ◽  
...  

AbstractThe overuse of antibiotics is exacerbating the antibiotic resistance crisis. Since this problem is a classic common-goods dilemma, it naturally lends itself to a game-theoretic analysis. Hence, we designed a model wherein physicians weigh whether antibiotics should be prescribed, given that antibiotic usage depletes its future effectiveness. The physicians’ decisions rely on the probability of a bacterial infection before definitive laboratory results are available. We show that the physicians’ equilibrium decision rule of antibiotic prescription is not socially optimal. However, we prove that discretizing the information provided to physicians can mitigate the gap between their equilibrium decisions and the social optimum of antibiotic prescription. Despite this problem’s complexity, the effectiveness of the discretization solely depends on the type of information available to the physician to determine the nature of infection. This is demonstrated on theoretic distributions and a clinical dataset. Our results provide a game-theory based guide for optimal output of current and future decision support systems of antibiotic prescription.


2021 ◽  
pp. 127407
Author(s):  
Yuhan Bai ◽  
Kai Fan ◽  
Kuan Zhang ◽  
Xiaochun Cheng ◽  
Hui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document