scholarly journals Collisions of Two-Phase Liquid Droplets in a Heated Gas Medium

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1476
Author(s):  
Pavel Tkachenko ◽  
Nikita Shlegel ◽  
Pavel Strizhak

The paper presents the experimental research findings for the integral characteristics of processes developing when two-phase liquid droplets collide in a heated gas medium. The experiments were conducted in a closed heat exchange chamber space filled with air. The gas medium was heated to 400–500 °C by an induction system. In the experiments, the size of initial droplets, their velocities and impact angles were varied in the ranges typical of industrial applications. The main varied parameter was the percentage of vapor (volume of bubbles) in the droplet (up to 90% of the liquid volume). The droplet collision regimes (coalescence, bounce, breakup, disruption), size and number of secondary fragments, as well as the relative volume fraction of vapor bubbles in them were recorded. Differences in the collision regimes and in the distribution of secondary fragments by size were identified. The areas of liquid surface before and after the initial droplet breakup were determined. Conditions were outlined in which vapor bubbles had a significant and, on the contrary, fairly weak effect on the interaction regimes of two-phase droplets.

1991 ◽  
Vol 248 ◽  
Author(s):  
F. Perrot ◽  
T. Baumberger

AbstractPhase separation in an off-critical binary mixture is studied under an uniform and steady shear flow. The nucleation and subsequent growth of droplets in aweakly supersaturated mixture (volume fraction of the new phase smaller than 10%) is studied by small angle scattering and turbidity measurements. The completion of the nucleation process is shown to be accelerated by the shear flow. At very low supersaturation, a strong effect of shear is detected which can be related to shear-triggered nucleation. In situ measurements ’of the surface tension between the two phase-separating phases obtained by studying the deformation and tilt of the growing droplets is discussed.


Author(s):  
G. Luret ◽  
T. Me´nard ◽  
J. Re´veillon ◽  
A. Berlemont ◽  
F. X. Demoulin

Among the different processes that play a role during the atomization process, collisions are addressed in this work. Collisions can be very important in dense two-phase flows. Recently, the Eulerian Lagrangian Spray Atomization (ELSA) model has been developed. It represents the atomization by taking into account the dense zone of the spray. Thus in this context, collisions modeling are of the utmost importance. In this model results of collisions are controlled by the value of an equilibrium Weber number, We*. It is defined as the ratio between the kinetic energy to the surface energy. Such a value of We* has been studied in the past using Lagrangian collision models with various complexity. These models are based on analysis of collisions between droplets that have surface at rest. This ideal situation can be obtained only if droplet agitation created during a collision has enough time to vanish before the next collision. For a spray, this requirement is not always fulfill depending for instance on the mean liquid volume fraction. If there is not enough time, collisions will occur between agitated droplets changing the issue of the collision with respect to the ideal case. To study this effect, a DNS simulation with a stationary turbulence levels has been conducted for different liquid volume fractions in a cubic box with periodic condition in all directions. For liquid volume fraction close to zero the spray is diluted and collisions between spherical droplets can be identified. For a volume fraction close to one, collisions between bubbles are found. For a middle value of the volume fraction no discrete phase can be observed, instead a strong interaction between both liquid and gas phases is taking place. In all this case the equilibrium value of the Weber number We* can be determined. First propositions to determine We* as a function of the kinetic energy, density ratio, surface tension coefficient and the volume fraction will be proposed.


Author(s):  
Franc¸ois Gruselle ◽  
Johan Steimes ◽  
Patrick Hendrick

The Aero-Thermo-Mechanics (ATM) department of Universite´ Libre de Bruxelles (ULB) develops a new system to simultaneously pump and separate a two-phase flow, in particular oil/air mixtures. Two-phase flows are encountered in many applications (oil extraction, flow in nuclear power plant pumps, pulp and paper processing) but the study is mainly focused on aeroengine lubrication systems. The main objective is to obtain a compact and efficient system that can both extract the gas of a two-phase flow and increase the pressure of the liquid phase. Particular care is given to the liquid flow rate lost at the gas outlet of the system. A large range of gas/liquid volume ratio has been studied, leading to different two-phase flow regimes at the inlet of the system (slug, churn or annular flow). After successful tests with water-air prototypes, which have allowed to identify the key design and working parameters, the technology has been implemented for a hot oil-air mixture. This paper presents the test results of the first oil/air prototype under real in-flight operating conditions. The tests with oil/air mixtures were performed on the aeroengine lubrication system test bench of the ATM department. The identification and implementation of appropriate two-phase flow rate measurement systems is an essential contribution to the project. Two attractive measurement systems have been considered: a Coriolis density meter for the volume fraction at the liquid outlet and radio-tracing elements for the measurement of the oil consumption at the air outlet. In parallel, the flow field in the pump and separator system has been studied with commercial CFD (Computational Fluid Dynamics) software packages. The choice of the two-phase flow model is highly dependent on the two-phase flow regime. But different regimes can simultaneously exist in the pump and separator system. So, the Eulerian two-phase flow model, the most complex and general model, seems to be the most appropriate. A coupling of this model with a dispersed phase model is under investigation to take all two-phase flow phenomena into account.


2021 ◽  
Author(s):  
Jing Yang ◽  
Luis San Andrés

Abstract Current and upcoming two-phase pump and compression systems in subsea production facilities must demonstrate long-term operation and continuous availability. Annular pressure seals, limiting secondary flow, also influence the dynamic stability of turbomachinery. Hence, it becomes paramount to quantify the leakage and dynamic force coefficients of annular seals operating with two-phase flow, a liquid in gas mixture or wet gas. Until now, a simple model for labyrinth seals (LSs) and the more modern pocket damper seals (PDSs) is not available, though these seal types find wide applications in subsea machinery. The paper develops a simple analytical model predicting the leakage and cavity pressures for LSs and PDSs operating with two-phase flow. The model adapts Neumann’s leakage equation for use with the physical properties of a homogeneous two-phase flow mixture. Predictions of leakage for a four-blade, eight-pocket, fully partitioned PDS operating under a low supply pressure (PS = 2.3 bar and 3.2 bar) and a low rotor speed equal to 5,250 rpm (surface speed = 35 m/s) agree well with experimental results procured for both a pure gas and a wet gas conditions (2.2% in liquid volume). Predicted leakage and cavity pressures also agree with those found by a multi-million node computational fluid dynamics (CFD) model. For an eight-blade, sixteen-pocket PDS supplied with air at PS = 62.1 bar, discharge pressure Pa = 31.1 bar and rotor speed of 15 krpm (surface speed = 91 m/s), the analytical model predicts leakage that is just 2% larger than a published CFD prediction. For the PDS supplied with an oil in gas mixture having gas volume fraction βS = 0.92 ∼ 0.98, the simple model delivers leakage that is up to ∼ 6% lower than published CFD results. An analysis of the two-phase leakage predictions via a modified flow factor reveals a loss coefficient (cd) impervious to the range of supply and discharge pressures considered and growing in proportion to the liquid volume fraction. Throughout the life of an oil well that sees radical changes in gas and liquid composition as well as pressure conditions, the expedient model, quick and accurate to estimate leakage in wet gases seals, can be readily integrated into an engineering routine or practice.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
M. Pini ◽  
L. Azzini ◽  
S. Vitale ◽  
P. Colonna

Abstract This paper presents a fully turbulent two-phase discrete adjoint method for metastable condensing flows targeted to turbomachinery applications. The method is based on a duality preserving algorithm and implemented in the open-source CFD tool SU2. The optimization framework is applied to the shape optimization of two canonical steam turbine cascades, commonly referred to as White cascade and Dykas cascade. The optimization were carried out by minimizing either the liquid volume fraction downstream of the cascade or the total entropy generation due viscous effects and heat transfer. In the first case, the amount of condensate turned out to be reduced by as much as 24%, but without reduction of the generated entropy, while the opposite resulted in the second case. The outcomes demonstrate the capability and computational efficiency of adjoint-based automated design for the shape optimization of turbomachinery operating with phase change flow.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6219
Author(s):  
Natalia Barteczko ◽  
Justyna Więcławik ◽  
Anna Tracz ◽  
Ewa Pankalla ◽  
Karol Erfurt ◽  
...  

As a result of strict regulations of phthalate plasticizers, alternative non-phthalate forms are desired and increasingly used. This work presents a synthetic method for alternative plasticizers (dialkyl succinates and adipates) via esterification of succinic and adipic acid with alcohols: butan-1-ol and 2-ethylhexan-1-ol. Ionic liquids were synthesized by the reaction of triethylamine with over-equimolar (1:2.7) amounts of sulfuric(VI) acid, which were used as an acidic catalyst and solvent. The two-phase liquid–liquid system was formed during the reaction due to immiscibility of the esters with the ionic liquid. This phenomenon is a driving force of this process, shifting the equilibrium toward the product formation. As a result, dialkyl succinates and adipates were obtained in high yields (99%) and selectivities (>99%), under mild reaction conditions at 70–80 °C and using a 4:1 molar ratio of alcohol to acid and 15 mol% of catalyst. The catalyst was recycled 10 times without any loss of activity. This alternative method is highly competitive: it involves a simple procedure for product isolation as well as a high yield and purity of the resulting esters. These advantages make this method sustainable and promising for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document