scholarly journals Thermality Versus Objectivity: Can They Peacefully Coexist?

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1506
Author(s):  
Thao P. Le ◽  
Andreas Winter ◽  
Gerardo Adesso

Under the influence of external environments, quantum systems can undergo various different processes, including decoherence and equilibration. We observe that macroscopic objects are both objective and thermal, thus leading to the expectation that both objectivity and thermalisation can peacefully coexist on the quantum regime too. Crucially, however, objectivity relies on distributed classical information that could conflict with thermalisation. Here, we examine the overlap between thermal and objective states. We find that in general, one cannot exist when the other is present. However, there are certain regimes where thermality and objectivity are more likely to coexist: in the high temperature limit, at the non-degenerate low temperature limit, and when the environment is large. This is consistent with our experiences that everyday-sized objects can be both thermal and objective.

1998 ◽  
Vol 13 (11) ◽  
pp. 843-852 ◽  
Author(s):  
P. F. BORGES ◽  
H. BOSCHI-FILHO ◽  
C. FARINA

We show that the assumption of quasiperiodic boundary conditions (those that interpolate continuously periodic and antiperiodic conditions) in order to compute partition functions of relativistic particles in 2+1 space–time can be related with anyonic physics. In particular, in the low temperature limit, our result leads to the well-known second virial coefficient for anyons. Besides, we also obtain the high temperature limit as well as the full temperature dependence of this coefficient.


2013 ◽  
Vol 665 ◽  
pp. 154-158
Author(s):  
Digish K. Patel ◽  
K.N. Vyas ◽  
A.C. Sharma

Apart from its promising new material for technological innovations and applications, graphene offers a new and novel physics. In recent past, both single layer and bilayer Graphene have extensively been studied. Properties of Graphene sharply differ from that of 2DEG observed in doped semiconductor heterostructures. One of the important properties requisite for device making is charge transport. It has been suggested that considering a scattering mechanism based on screened charged impurities, one can obtain from a Boltzmann equation approach a conductivity that agrees with the experimental result on graphene. In this paper, we present a calculation of electron-impurity scattering rate, as a function of quasi particle energy ε measured from Fermi energy εf, in doped bilayer graphene for both high temperature TTf and low temperature TTf regimes. In the low temperature limit, we observe dip at normalized energy y=1.0, which is absent in the high temperature limit. Our numerical calculation shows that scattering rate remains almost constant with temperature in both regimes.


2014 ◽  
Vol 35 (3) ◽  
pp. 145-154
Author(s):  
Piotr Cyklis ◽  
Ryszard Kantor ◽  
Tomasz Ryncarz ◽  
Bogusław Górski ◽  
Roman Duda

Abstract The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Jaewon Song

Abstract We study the asymptotic behavior of the (modified) superconformal index for 4d $$ \mathcal{N} $$ N = 1 gauge theory. By considering complexified chemical potential, we find that the ‘high-temperature limit’ of the index can be written in terms of the conformal anomalies 3c − 2a. We also find macroscopic entropy from our asymptotic free energy when the Hofman-Maldacena bound 1/2 < a/c < 3/2 for the interacting SCFT is satisfied. We study $$ \mathcal{N} $$ N = 1 theories that are dual to AdS5 × Yp,p and find that the Cardy limit of our index accounts for the Bekenstein-Hawking entropy of large black holes.


Sign in / Sign up

Export Citation Format

Share Document