scholarly journals UAV-Assisted Data Collection in Wireless Sensor Networks: A Comprehensive Survey

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2603
Author(s):  
Minh T. Nguyen ◽  
Cuong V. Nguyen ◽  
Hai T. Do ◽  
Hoang T. Hua ◽  
Thang A. Tran ◽  
...  

Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energy-storage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Asmaa Ez-Zaidi ◽  
Said Rakrak

Wireless sensor networks have been the subject of intense research in recent years. Sensor nodes are used in wide range of applications such as security, military, and environmental monitoring. One of the most interesting applications in wireless sensor networks is target tracking, which mainly consists in detecting and monitoring the motion of mobile targets. In this paper, we present a comprehensive survey of target tracking approaches. We then analyze them according to several metrics. We also discuss some of the challenges that influence the performance of tracking schemes. In the end, we conduct detailed analysis and comparison between these algorithms and we conclude with some future directions.


2021 ◽  
Author(s):  
Ramin Danehchin

Abstract Data collection on Wireless Sensor Networks (WSNs) is a significant challenge to satisfy the requirements of various applications. Providing an energy-efficient routing technique is the primary step in data collection over WSNs. The existing data collection techniques in the WSNs field struggle with the imbalance load distribution and the short lifetime of the network. This paper proposes a novel mechanism to select cluster-heads, cluster the wireless sensor nodes, and determine the optimal route from source nodes to the sink. We employ the genetic algorithm to solve the routing problem considering the hop-count of the cluster-heads to the sink, the number of each cluster member, residual energy of cluster-heads, and the number of cluster-heads connected to the sink as the fitness criteria. Our proposed mechanism uses a greedy approach to calculate the hop-count of each cluster-head to the sink for integrating the clustering and routing process on WSNs. The simulation results demonstrate that our proposed mechanism improves the energy consumption, the number of live nodes, and the lifetime of the network compared to other data collection approaches on WSNs.


2021 ◽  
Author(s):  
Ihsan Ali

<div>Data collection is an essential part of sensor devices, particularly in such technologies Like Internet of Things (IoT), wireless sensor networks (WSN), and sensor cloud (SC). In recent years, various literature had been published in these research areas to propose different models, architectures, and contributions in the domains. Due to the importance of efficient data collection regarding reducing. energy consumption, latency, network lifetime, and general cost, a momentous literature volume has been published to facilitate data collection. Hence, review studies have been conducted on data collection in these domains in isolation. However, a lack of comprehensive review collectively identifies and analyzes the differences and similarities among the data collection proposals in IoT, WSN, and SC. The main objective of this research is to conduct a comprehensive survey to explore the current state, use cases, contributions, performance measures, evaluation measures, and architecture in the IoT, WSN, and SC research domains. The findings indicate that studies on data collection in IoT, WSN, and SC are relatively consistent with stable output in the last five years. Nine novel contributions are found with models, algorithms, and frameworks being the most utilized by the selected studies. In conclusion, key research challenges and future research directions have been identified and discussed.</div>


2021 ◽  
Author(s):  
Ihsan Ali

<div>Data collection is an essential part of sensor devices, particularly in such technologies Like Internet of Things (IoT), wireless sensor networks (WSN), and sensor cloud (SC). In recent years, various literature had been published in these research areas to propose different models, architectures, and contributions in the domains. Due to the importance of efficient data collection regarding reducing. energy consumption, latency, network lifetime, and general cost, a momentous literature volume has been published to facilitate data collection. Hence, review studies have been conducted on data collection in these domains in isolation. However, a lack of comprehensive review collectively identifies and analyzes the differences and similarities among the data collection proposals in IoT, WSN, and SC. The main objective of this research is to conduct a comprehensive survey to explore the current state, use cases, contributions, performance measures, evaluation measures, and architecture in the IoT, WSN, and SC research domains. The findings indicate that studies on data collection in IoT, WSN, and SC are relatively consistent with stable output in the last five years. Nine novel contributions are found with models, algorithms, and frameworks being the most utilized by the selected studies. In conclusion, key research challenges and future research directions have been identified and discussed.</div>


2021 ◽  
Author(s):  
Zohar Naor

Abstract This study suggests using a user-initiated detecting and data gathering from power-limited and even passive wireless devices, such as passive RFID tags, wireless sensor networks (WSNs), and Internet of Things (IoT) devices, that either power limitation or poor cellular coverage prevents them from communicating directly with wireless networks. While previous studies focused on sensors that continuously transmit their data, the focus of this study is on passive devices. The key idea is that instead of receiving the data transmitted by the sensor nodes, an external device (a reader), such as an unnamed aerial vehicle (UAV), or a smartphone is used to detect IoT devices and read the data stored in the sensor nodes, and then to deliver it to the cloud, in which it is stored and processed. While previous studies on UAV-aided data collection from WSNs focused on the UAV path planning, the focus of this study is on the rate at which the passive sensor nodes should be polled. That is, to find the minimal monitoring rate that still guarantees accurate and reliable data collection. The proposed scheme enables us to deploy wireless sensor networks over a large geographic area (e.g., for agricultural applications), in which the cellular coverage is very poor if any. Furthermore, the usage of initiated data collection can enable the deployment of passive WSNs. Thus, can significantly reduce both the operational cost, as well as the deployment cost, of the WSN.


Author(s):  
KHYATI SHRIVASTAV ◽  
ASWATH A.R.

In the wireless sensor networks, the communication links between sensor nodes is important. This paper presents the analysis on the effect of parameters of network size, number of nodes and communication ranges on the number of communication links in the sensor network systems. The MATLAB tool is used for deployment of sensor nodes in various area fields.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hongyao Luo ◽  
Zhichuan Huang ◽  
Ting Zhu

In recent years, the industrial, scientific, and medical (ISM) bands have been intensively shared with unlicensed wireless communications applications such as wireless sensor networks (WSNs). With flourishing popularity of sensor devices and increasing installation of wireless sensor nodes, the cross technology interference (CTI) has become a considerable real-world problem. Because of CTI, wireless devices suffer significant communication dilemma. Moreover, ISM band, as the main communication medium of WSN, should be reasonably utilized in an efficient and effective manner. Extensive approaches have been proposed to explore spectrum utilization in WSN. However, there is no such one, which systematically organizes these works. In this paper, we present a comprehensive survey on spectrum utilization in WSNs. To achieve this goal, We first illustrate the background of WSN and spectrum utilization. Our concern on CTI is then noted. Later we demonstrate the importance of efficient spectrum utilization. Eventually, through classification and summary of recent related works, we provide an essential structure of research in titled field and detailed intellectual merits of published works. Our survey covers more than 80 studies in the scope of spectrum utilization in WSN.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Youngtae Jo

To effectively transfer sensing data to a sink node, system designers should consider the characteristic of wireless sensor networks in the way of data transmission. In particular, sensor nodes surrounding a fixed sink node have routinely suffered from concentrated network traffic so that their battery energy is rapidly exhausted. The lifetime of wireless sensor networks decreases due to the rapid power consumption of these sensor nodes. To address the problem, a mobile sink model has recently been chosen for traffic load distribution among sensor nodes. However, since a mobile sink continuously changes its location in sensor networks, it has a time limitation to communicate with each sensor node and unstable signal strength from each sensor node. Therefore, fair and stable data collection policy between a mobile sink and sensor nodes is necessary in this circumstance. In this paper, we propose a new scheduling policy to support fair and stable data collection for a mobile sink in wireless sensor networks. The proposed policy performs data collection scheduling based on the communication availability of data transmission between sensor nodes and a mobile sink.


Author(s):  
Yaqiong Zhang ◽  
Jiyan Lin ◽  
Hui Zhang

To the characteristics of large number of sensor nodes, wide area and unbalanced energy consumption in farmland Wireless Sensor Networks, an efficient data collection strategy (GCMS) based on grid clustering and a mobile sink is proposed. Firstly, cluster is divided based on virtual grid, and the cluster head is selected by considering node position and residual energy. Then, an optimal mobile path and residence time allocation mechanism for mobile sink are proposed. Finally, GCMS is simulated and compared with LEACH and GRDG. Simulation results show that GCMS can significantly prolong the network lifetime and increase the amount of data collection, especially suitable for large-scale farmland Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document