scholarly journals Design of a Wide-Dynamic RF-DC Rectifier Circuit Based on an Unequal Wilkinson Power Divider

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2815
Author(s):  
Cheng Peng ◽  
Zhihao Ye ◽  
Jianhua Wu ◽  
Cheng Chen ◽  
Zerun Wang

In this paper, a dual-channel RF-DC microwave rectifier circuit is designed with a 2:1 power distribution ratio in a Wilkinson power splitter. The rectifier circuit works at 2.45 Ghz. After impedance matching and tuning, the structure is able to broaden the dynamic power range of the rectifier circuit while maintaining maximum rectifier efficiency. Compared with the HSMS2820 rectifier branch, this design enhances the power dynamic ranges of 60% efficiency and 50% efficiency by 4 dBm and 3 dBm, respectively. Compared with the HSMS2860 rectifier branch, for the efficiency of 60% and efficiency of 50%, the power dynamic range is expanded by 5 dBm and 2 dBm, respectively. This shows that the technology is helpful for improving the stability of energy conversion at the receiver end of microwave wireless energy transmission systems. Finally, the rationality of this conclusion is verified by establishing a mathematical model.

Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kevin Kuhlmann ◽  
Melanie Cieselski ◽  
Julia Schumann

Abstract Background In the present study, two distinct PCR methods were used for the quantification of genetic material and their results were compared: real-time-PCR (qPCR; relative quantification) and droplet digital PCR (ddPCR; absolute quantification). The comparison of the qPCR and the ddPCR was based on a stimulation approach of microvascular endothelial cells in which the effect of a pro-inflammatory milieu on the expression of vasoactive receptors was investigated. Results There was consistency in directions of effects for the majority of genes tested. With regard to the indicated dimension of the effects, the overall picture was more differentiated. It was striking that deviations were more pronounced if the measured values were on the extreme edges of the dynamic range of the test procedures. Conclusions To obtain valid and reliable results, dilution series are recommended, which should be carried out initially. In case of ddPCR the number of copies per µl should be adjusted to the low three-digit range. With regard to qPCR it is essential that the stability and reliability of the reference genes used is guaranteed. Here, ddPCR offers the advantage that housekeeping genes are not required. Furthermore, an absolute quantification of the sample can be easily performed by means of ddPCR. Before using ddPCR, however, care should be taken to optimize the experimental conditions. Strict indications for this methodology should also be made with regard to economic and timing factors.


2005 ◽  
Vol 288 (6) ◽  
pp. R1637-R1648 ◽  
Author(s):  
Peter E. Hammer ◽  
J. Philip Saul

A mathematical model of the arterial baroreflex was developed and used to assess the stability of the reflex and its potential role in producing the low-frequency arterial blood pressure oscillations called Mayer waves that are commonly seen in humans and animals in response to decreased central blood volume. The model consists of an arrangement of discrete-time filters derived from published physiological studies, which is reduced to a numerical expression for the baroreflex open-loop frequency response. Model stability was assessed for two states: normal and decreased central blood volume. The state of decreased central blood volume was simulated by decreasing baroreflex parasympathetic heart rate gain and by increasing baroreflex sympathetic vaso/venomotor gains as occurs with the unloading of cardiopulmonary baroreceptors. For the normal state, the feedback system was stable by the Nyquist criterion (gain margin = 0.6), but in the hypovolemic state, the gain margin was small (0.07), and the closed-loop frequency response exhibited a sharp peak (gain of 11) at 0.07 Hz, the same frequency as that observed for arterial pressure fluctuations in a group of healthy standing subjects. These findings support the theory that stresses affecting central blood volume, including upright posture, can reduce the stability of the normally stable arterial baroreflex feedback, leading to resonance and low-frequency blood pressure waves.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2021 ◽  
Vol 8 (4) ◽  
pp. 783-796
Author(s):  
H. W. Salih ◽  
◽  
A. Nachaoui ◽  

In this work, we study an impulsive mathematical model proposed by Chavez et al. [1] to describe the dynamics of cancer growth and HIV infection, when chemotherapy and HIV treatment are combined. To better understand these complex biological phenomena, we study the stability of equilibrium points. To do this, we construct an appropriate Lyapunov function for the first equilibrium point while the indirect Lyapunov method is used for the second one. None of the equilibrium points obtained allow us to study the stability of the chemotherapeutic dynamics, we then propose a bifurcation of the model and make a study of the bifurcated system which contributes to a better understanding of the underlying biochemical processes which govern this highly active antiretroviral therapy. This shows that this mathematical model is sufficiently realistic to formulate the impact of this treatment.


Author(s):  
Cheng Jiang ◽  
Xiaokang Wu ◽  
Bin Wei ◽  
Ziyue Li ◽  
Qian Yang ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 185-199 ◽  
Author(s):  
Christina E Higgins ◽  
Patricia Neybold ◽  
Marcella B Holdridge ◽  
Catherine R Barnes ◽  
Yan Dong ◽  
...  

Abstract Background The 4Kscore Test determines a personalized risk score for aggressive prostate cancer by combining the blood sample measurements of total prostate-specific antigen (tPSA), free PSA (fPSA), intact PSA (iPSA), and human kallikrein-related peptidase 2 (hK2) with patient clinical information to generate the patient risk's score; thus, accuracy and precision of the 4Kscore depend on the reliability of these measurements. Although tPSA and fPSA are measured on a Food and Drug Administration (FDA)-approved platform, the performance of the iPSA and hK2 assays in the clinical setting has not previously been reported. Methods Analytical performance was determined for the iPSA and hK2 assays in both serum and EDTA plasma, according to Clinical and Laboratory Standards Institute guidelines. Equivalence of the 4Kscore in both sample matrices was demonstrated in a 353-patient clinical cohort, and the stability of endogenous iPSA and hK2 for at least 3 days was demonstrated in a smaller subset. Results Intralaboratory and interlaboratory precision of the iPSA and hK2 assays in both matrices was comparable with that of FDA-approved tPSA and fPSA assays (<18% for iPSA; <8% for hK2). The picogram per milliliter sensitivity and wide dynamic range of the iPSA and hK2 assays allowed for accurate measurements in the target population. The 4Kscore generated in either matrix up to 3 days after collection is equivalent to that measured within 24 h of collection (Passing–Bablok slope 95% CI: plasma, 0.999–1.034; serum, 0.997–1.040). Conclusions The robust performance of component assays and reliable stability of the endogenous analytes in clinical samples proven here ensures an accurate 4Kscore Test result.


Sign in / Sign up

Export Citation Format

Share Document