scholarly journals The Grid Independence of an Electric Vehicle Charging Station with Solar and Storage

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2940
Author(s):  
Alex Caines ◽  
Aritra Ghosh ◽  
Ankur Bhattacharjee ◽  
Adam Feldman

The UK government has set a ban on the sale of new petrol and diesel cars and vans by 2030. This will create a shift to electric vehicles. which will present a substantial impact on the grid. Therefore, methods to reduce the charging station’s impact on the grid have to be developed. This paper’s objective is to evaluate how integrating solar and storage affects a charging station’s dependence on the grid. A photovoltaic electric vehicle charging station (PVEVCS) is first designed, and then four charging profiles are selected to assess the station through a simulation using MATLAB. The array produces 3257 MWh/yr which, on average, offsets 40% of the electric vehicle (EV) load experienced by the station. Furthermore, with the integration of storage, the dependence is further reduced by 10% on average. The system also exported energy to the grid, offsetting close to all the energy imported.

2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


2014 ◽  
Vol 875-877 ◽  
pp. 1827-1830 ◽  
Author(s):  
Xian Qiu Tan ◽  
Sheng Chun Yang ◽  
Yan Ping Fang ◽  
Dong Xue

Electric vehicle charging station provides power supply for electric vehicles running, and it is the most important supporting infrastructure of electric vehicles. The article analyses three modes of electric vehicle charging station charging methods, discusses the advantages and disadvantages of each model, gives the developing trend of the pattern of the operation of electric vehicles, and provides some effective suggestions for electric vehicle charging station for the future.


2021 ◽  
Vol 4 (3) ◽  
pp. 63
Author(s):  
Sherif A. Zaid ◽  
Hani Albalawi ◽  
Khaled S. Alatawi ◽  
Hassan W. El-Rab ◽  
Mohamed E. El-Shimy ◽  
...  

The electric vehicle (EV) is one of the most important and common parts of modern life. Recently, EVs have undergone a big development thanks to the advantages of high efficiency, negligible pollution, low maintenance, and low noise. Charging stations are very important and mandatory services for electric vehicles. Nevertheless, they cause high stress on the electric utility grid. Therefore, renewable energy-sourced charging stations have been introduced. They improve the environmental issues of the electric vehicles and support remote area operation. This paper proposes the application of fuzzy control to an isolated charging station supplied by photovoltaic power. The system is modeled and simulated using Matlab/Simulink. The simulation results indicate that the disturbances in the solar insolation do not affect the electric vehicle charging process at all. Moreover, the controller perfectly manages the stored energy to compensate for the solar energy variations. Additionally, the system response with the fuzzy controller is compared to that with the PI controller. The comparison shows that the fuzzy controller provides an improved response.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2020 ◽  
Vol 12 (7) ◽  
pp. 2579 ◽  
Author(s):  
Ashish Kumar Karmaker ◽  
Md. Alamgir Hossain ◽  
Nallapaneni Manoj Kumar ◽  
Vishnupriyan Jagadeesan ◽  
Arunkumar Jayakumar ◽  
...  

The growing popularity of electric vehicles (EV) is creating an increasing burden on the power grid in Bangladesh due to massive energy consumption. Due to this uptake of variable energy consumption, environmental concerns, and scarcity of energy lead to investigate alternative energy resources that are readily available and environment friendly. Bangladesh has enormous potential in the field of renewable resources, such as biogas and biomass. Therefore, this paper proposes a design of a 20 kW electric vehicle charging station (EVCS) using biogas resources. A comprehensive viability analysis is also presented for the proposed EVCS from technological, economic, and environmental viewpoints using the HOMER (Hybrid Optimization of Multiple Energy Resources) model. The viability result shows that with the capacity of 15–20 EVs per day, the proposed EVCS will save monthly $16.31 and $29.46, respectively, for easy bike and auto-rickshaw type electric vehicles in Bangladesh compare to grid electricity charging. Furthermore, the proposed charging station can reduce 65.61% of CO2 emissions than a grid-based charging station.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 25 ◽  
Author(s):  
Hassan S. Hayajneh ◽  
Xuewei Zhang

The optimal planning of electric vehicle charging infrastructure has attracted extensive research interest in recent years. Most of the optimization problems were formulated by assuming that the configurations will be fixed at the optimal solution while overlooking the fact that the charging stations and the electric vehicles are “evolving” over time and have mutual impacts. On the other hand, little attention has been paid to evaluate the performance of the solutions in such a dynamic environment. Motivated by these gaps, this work develops a simulation model that captures the interactions between charging station configurations and electric vehicle population (and the preference of electric vehicles when choosing charging station). This modeling framework is then implemented to evaluate the performance of planned charging infrastructure in providing services to electric vehicles. Two indicators are calculated, i.e., usage rate and rejection rate. The former measures the “waste” due to abundant facilities installed; the latter measures the inadequacy of planned facilities, especially when the electric vehicle population is larger. The simulation results presented in this work validate the model and show the potential of the model not only to evaluate designs but also to be used for optimal planning in subsequent works.


2013 ◽  
Vol 291-294 ◽  
pp. 2362-2365
Author(s):  
Bo Ye ◽  
Zhang Zhou He ◽  
Guo Meng Huang ◽  
Xue Song He ◽  
Hui Quan Li

With the development of electric vehicle industry, it is necessary to construct more electric vehicle charging stations to promote the popularization of electric vehicles. As photovoltaic generation owns flexible installing, convenient power supplying, and environmental protecting characteristics, it is suitable for providing power for electric vehicle charging stations and reducing a network loads. After analyzed electric vehicle charging demand, this paper proposed the designing concept of the electric system for the photovoltaic generation mix charging station, which was based on the battery charging and discharging characteristics as well as its usage. Then, the paper provided a selection of electric equipments for the charging station and an electric wiring diagram after designing the electric system. This study and design may help for promoting construction of electric vehicle charging stations, and development and popularization of electric vehicles.


Author(s):  
Rutuja Rajole ◽  
Rutuja Kakulte ◽  
Ashwin Pathak

Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution systems is also discussed. The methodology presented here was time-and cost-effective, as well as scalable to other organizations that own charging stations. Electric vehicles (EVs) are becoming increasingly popular in many countries of the world. EVs are proving more energy efficient and environmental friendly. But the lack of charging stations restricts the wide adoption of EVs in the world. As EV usage grows, more public spaces are installing EV charging stations.


Sign in / Sign up

Export Citation Format

Share Document