scholarly journals A High-Efficiency Self-Synchronous RF–DC Rectifier Based on Time-Reversal Duality for Wireless Power Transfer Applications

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Ying Wang ◽  
Gao Wei ◽  
Shiwei Dong ◽  
Yazhou Dong ◽  
Xumin Yu ◽  
...  

An RF–DC rectifier is an important part in a wireless power transfer system. Diode-based rectifiers are widely used in low-power harvesting scenarios, and for high power, a transistor based on the time-reversal duality was proposed. This paper presents a high-efficiency self-synchronous RF–DC rectifier based on a waveform-guided design method and an improved rectification model of a commercial GaN device. The main contributions of this paper are that (1) an improved transistor model with correct reverse bias is built for accurate rectifier simulation, and (2) a new design method of self-synchronous RF–DC rectifier is proposed: as soon as the operating mode of the rectifier, input power, and DC load are set, matching and coupling network can be calculated directly based on waveform-guided method, thus design and adjustment process of a conventional power amplifier (PA) due to the duality between a PA and a rectifier would no longer be required. A 5.8 GHz self-synchronous RF–DC rectifier is designed for validation, and the optimum RF–DC conversion efficiency is 68% with 12 W input power as well as 19.9 V output DC potential with 50 Ω load resistance. The proposed rectifier is suitable for high input power rectification applications of wireless power transfer.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo-Hee Choi ◽  
Jeong-Hae Lee

This paper presents a new design method of asymmetrical relay resonators for maximum wireless power transfer. A new design method for relay resonators is demanded because maximum power transfer efficiency (PTE) is not obtained at the resonant frequency of unit resonator. The maximum PTE for relay resonators is obtained at the different resonances of unit resonator. The optimum design of asymmetrical relay is conducted by both the optimum placement and the optimum capacitance of resonators. The optimum placement is found by scanning the positions of the relays and optimum capacitance can be found by using genetic algorithm (GA). The PTEs are enhanced when capacitance is optimally designed by GA according to the position of relays, respectively, and then maximum efficiency is obtained at the optimum placement of relays. The capacitance of the second resonator tonth resonator and the load resistance should be determined for maximum efficiency while the capacitance of the first resonator and the source resistance are obtained for the impedance matching. The simulated and measured results are in good agreement.


2014 ◽  
Vol 599-601 ◽  
pp. 460-463
Author(s):  
Dai Chen ◽  
Li Gui Kang ◽  
Hang Cheng ◽  
Li Zhang

Gantry cranes are used throughout the materials handling industry. But conventional methods of power transfer to the cranes such as trolley conductor and wire directly connected have remained less than ideal, that is until the recent development of a novel wireless power transfer (WPT) system that is clean and spark-free, is robust to dust and water, and has very low maintenance. A 10kw WPT simulation system applied to gantry crane has been developed. The best compensation topology and the parameter have been studied in order to get high efficiency of the system. The study has been focused in showing the parameter design. Finally, the simulation has proved the validation of the proposed parameter design method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramesh K. Pokharel ◽  
Adel Barakat ◽  
Shimaa Alshhawy ◽  
Kuniaki Yoshitomi ◽  
Costas Sarris

AbstractConventional resonant inductive coupling wireless power transfer (WPT) systems encounter performance degradation while energizing biomedical implants. This degradation results from the dielectric and conductive characteristics of the tissue, which cause increased radiation and conduction losses, respectively. Moreover, the proximity of a resonator to the high permittivity tissue causes a change in its operating frequency if misalignment occurs. In this report, we propose a metamaterial inspired geometry with near-zero permeability property to overcome these mentioned problems. This metamaterial inspired geometry is stacked split ring resonator metamaterial fed by a driving inductive loop and acts as a WPT transmitter for an in-tissue implanted WPT receiver. The presented demonstrations have confirmed that the proposed metamaterial inspired WPT system outperforms the conventional one. Also, the resonance frequency of the proposed metamaterial inspired TX is negligibly affected by the tissue characteristics, which is of great interest from the design and operation prospects. Furthermore, the proposed WPT system can be used with more than twice the input power of the conventional one while complying with the safety regulations of electromagnetic waves exposure.


Sign in / Sign up

Export Citation Format

Share Document