scholarly journals A New Design Procedure for Rotor Laminations of Synchronous Reluctance Machines with Fluid Shaped Barriers

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Federica Uberti ◽  
Lucia Frosini ◽  
Loránd Szabó

A new procedure for the design and optimization of the rotor laminations of a synchronous reluctance machine is presented in this paper. The configuration of the laminations is symmetrical and contains fluid-shaped barriers. The parametrization principle is used, which executes variations in the lamination geometry by changing the position, thickness and shape of the flux barriers. Hence, the optimization procedure analyzes the various configurations through finite element simulations, by means of the communication between MATLAB and Flux 2D. In the post processing stage, the best geometry which optimizes mean torque, torque ripple, efficiency and power factor is selected. Once the best rotor configuration is defined, further investigations allow improving its performance by modifying the current angle, the stator winding and the thickness of the radial ribs.

Author(s):  
Nisha Prasad ◽  
Shailendra Jain ◽  
Sushma Gupta

Electromagnetism forms a mandatory topic in the syllabus of undergraduate and graduate courses in electrical engineering. This topic involves many physical and mathematical concepts like curl, divergence, gradient for field determination and representation. These concepts are not only difficult to understand but also often lead to poor learning because of the imaginations and non-visualization of electric and magnetic fields. A correct understanding of fields and its distribution is necessary to understand the working, design and optimization of electrical machines. This paper presents a finite element method (FEM) based educational tool that allows the technical students to visualize electromagnetic (EM) fields inside the EM systems. This tool therefore provides a better understanding of the design and optimization of various electrical devices. This paper shows an example of a 2-pole linear machine to visualize the distribution of the magnetic field in a non-linear circuit. This machine extends to form a linear switched reluctance motor (LSRM) using step-by-step design and optimization procedure along with the user guide interface programmed in FEM based ANSYS Maxwell software. This motor is used as an example to visualize magnetic fields using FEM software in complex circuits and can be used as a good educational tool for students. The paper incorporates the validation of the design procedure through FEM simulations.


Author(s):  
K. Wang ◽  
Z.Q. Zhu ◽  
G. Ombach ◽  
M. Koch ◽  
S. Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple. Design/methodology/approach – AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple. Findings – The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier. Research limitations/implications – The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. Originality/value – This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.


2021 ◽  
Vol 68 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Hailong Wu ◽  
Daniel Depernet ◽  
Vincent Lanfranchi ◽  
Khadija Ei Kadri Benkara ◽  
M. A. H. Rasid

2018 ◽  
Vol 16 (3) ◽  
pp. 806-812
Author(s):  
Alvaro Ernesto Hoffer ◽  
Roberto Hernan Moncada ◽  
Boris Javier Pavez ◽  
Juan Antonio Tapia

2013 ◽  
Vol 313-314 ◽  
pp. 45-50 ◽  
Author(s):  
Mohammadali Abbasian ◽  
Vahid Hanaeinejad

Double-stator switched reluctance machines benefit from a high torque density and a low radial force level in comparison with conventional switched reluctance machines resulting in a lower vibration and acoustic noise. Therefore, they are suitable candidate for automotive applications. However, torque pulsation which is also a source for vibration is still remained and should be alleviate by dimension optimization of the machine. This paper presents a design optimization of a double-stator switched reluctance machine for improving the magnetic torque quality of the machine. For this purpose finite element method along with response surface methodology is used to optimize three parameters of the machine to maximize torque quality factor i.e. the average torque to torque ripple ratio in the machine. Genetic algorithm method is also employed as an optimization tool. The aim of optimization is to maximize the ratio of average torque to torque ripple. Finite element results are presented to verify the optimization method.


Sign in / Sign up

Export Citation Format

Share Document