scholarly journals Energy-Efficient Multicast Precoding for Massive MIMO Transmission with Statistical CSI

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3175 ◽  
Author(s):  
Li You ◽  
Wenjin Wang ◽  
Xiqi Gao

In this paper, we investigate energy-efficient multicast precoding for massive multiple-input multiple-output (MIMO) transmission. In contrast with most previous work, where instantaneous channel state information (CSI) is exploited to facilitate energy-efficient wireless transmission design, we assume that the base station can only exploit statistical CSI of the user terminals for downlink multicast precoding. First, in terms of maximizing the system energy efficiency, the eigenvectors of the optimal energy-efficient multicast transmit covariance matrix are identified in closed form, which indicates that optimal energy-efficient multicast precoding should be performed in the beam domain in massive MIMO. Then, the large-dimensional matrix-valued precoding design is simplified into an energy-efficient power allocation problem in the beam domain with significantly reduced optimization variables. Using Dinkelbach’s transform, we further propose a sequential beam domain power allocation algorithm which is guaranteed to converge to the global optimum. In addition, we use the large-dimensional random matrix theory to derive the deterministic equivalent of the objective to reduce the computational complexity involved in sample averaging. We present numerical results to illustrate the near-optimal performance of our proposed energy-efficient multicast precoding for massive MIMO.

2017 ◽  
Vol 63 (1) ◽  
pp. 79-84
Author(s):  
M. K Noor Shahida ◽  
Rosdiadee Nordin ◽  
Mahamod Ismail

Abstract Energy Efficiency (EE) is becoming increasingly important for wireless communications and has caught more attention due to steadily rising energy costs and environmental concerns. Recently, a new network architecture known as Massive Multiple-Input Multiple-Output (MIMO) has been proposed with the remarkable potential to achieve huge gains in EE with simple linear processing. In this paper, a power allocation algorithm is proposed for EE to achieve the optimal EE in Massive MIMO. Based on the simplified expression, we develop a new algorithm to compute the optimal power allocation algorithm and it has been compared with the existing scheme from the previous literature. An improved water filling algorithm is proposed and embedded in the power allocation algorithm to maximize EE and Spectral Efficiency (SE). The numerical analysis of the simulation results indicates an improvement of 40% in EE and 50% in SE at the downlink transmission, compared to the other existing schemes. Furthermore, the results revealed that SE does not influence the EE enhancement after using the proposed algorithm as the number of Massive MIMO antenna at the Base Station (BS) increases.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 338 ◽  
Author(s):  
Li You ◽  
Xu Chen ◽  
Wenjin Wang ◽  
Xiqi Gao

This paper considers coordinated multi-cell multicast precoding for massive multiple-input-multiple-output transmission where only statistical channel state information of all user terminals (UTs) in the coordinated network is known at the base stations (BSs). We adopt the sum of the achievable ergodic multicast rate as the design objective. We first show the optimal closed-form multicast signalling directions of each BS, which simplifies the coordinated multicast precoding problem into a coordinated beam domain power allocation problem. Via invoking the minorization-maximization framework, we then propose an iterative power allocation algorithm with guaranteed convergence to a stationary point. In addition, we derive the deterministic equivalent of the design objective to further reduce the optimization complexity via invoking the large-dimensional random matrix theory. Numerical results demonstrate the performance gain of the proposed coordinated approach over the conventional uncoordinated approach, especially for cell-edge UTs.


This paper proposes a Deep Learning Energy Efficient Scheme (DLEE) for a massive multiple input multiple output system (MIMO). Massive MIMO is deployed using large number of antennas for multiple users. The proposed DLEE, learns the relationship between spatial beamforming pattern and the power consumption in a base station. In this work, we design a novel learning method where the spatial correlation across UE antennas are taken as input feature vector and find the output labels which give us the energy efficiency in a BS. Due to multipath propagation, other methods only try to address the energy efficiency problem through the bit rate and the power required for the throughput to be efficient. This paper discusses the unsupervised algorithm DLEE which is similar to an autoencoder by combining the power consumed due to radiation pattern through beamforming and the DL framework to address the energy efficiency to an extent of 12% in a BS.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850195
Author(s):  
P. Mangayarkarasi ◽  
J. Raja

Energy-efficient and reliable data transmission is a challenging task in wireless relay networks (WRNs). Energy efficiency in cellular networks has received significant attention because of the present need for reduced energy consumption, thereby maintaining the profitability of networks, which in turn makes these networks “greener”. The urban cell topography needs more energy to cover the total area of the cell. The base station does not cover the entire area in a given topography and adding more number of base stations is a cost prohibitive one. Energy-efficient relay placement model which calculates the maximum cell coverage is proposed in this work that covers all sectors and also an energy-efficient incremental redundancy-hybrid automatic repeat request (IR-HARQ) power allocation scheme to improve the reliability of the network by improving the overall network throughput is proposed. An IR-HARQ power allocation method maximizes the average incremental mutual information at each round, and its throughput quickly converges to the ergodic channel capacity as the number of retransmissions increases. Simulation results show that the proposed IR-HARQ power allocation achieves full channel capacity with average transmission delay and maintains good throughput under less power consumption. Also the impact of relaying performance on node distances between relay station and base station as well as between user and relay station and relay height for line of sight conditions are analyzed using full decode and forward (FDF) and partial decode and forward (PDF) relaying schemes. Compared to FDF scheme, PDF scheme provides better performance and allows more freedom in the relay placement for an increase in cell coverage.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-26 ◽  
Author(s):  
K. Vasudevan ◽  
K. Madhu ◽  
Shivani Singh

Background:Single user Massive Multiple Input Multiple Output (MIMO) can be used to increase the spectral efficiency since the data is transmitted simultaneously from a large number of antennas located at both the base station and mobile. It is feasible to have a large number of antennas in the mobile, in the millimeter wave frequencies. However, the major drawback of single user massive MIMO is the high complexity of data recovery at the receiver.Methods:In this work, we propose a low complexity method of data detection with the help of re-transmissions. A turbo code is used to improve the Bit-Error-Rate (BER).Results and Conclusion:Simulation results indicate a significant improvement in BER with just two re-transmissions as compared to the single transmission case. We also show that the minimum average SNR per bit required for error-free propagation over a massive MIMO channel with re-transmissions is identical to that of the Additive White Gaussian Noise (AWGN) channel, which is equal to -1.6 dB.


Sign in / Sign up

Export Citation Format

Share Document