scholarly journals A Novel Autonomous Current-Sharing Control Strategy for Multiple Paralleled DC–DC Converters in Islanded DC Microgrid

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3951 ◽  
Author(s):  
Zhang ◽  
Zhuang ◽  
Liu ◽  
Wang ◽  
Guo

Due to the existence of line impedances and low-bandwidth communication, the traditional peer-to-peer control method based on droop control has difficult meeting the requirements of current sharing and voltage stability in islanded DC microgrids at the same time. In this paper, a novel current-sharing control strategy based on injected small ac voltage with low frequency and low amplitude is proposed for multiple paralleled DC–DC converters. The small ac voltage is superimposed onto the output voltage of each converter. Then, the reactive circulating power is generated and used to regulate the output DC voltage of each converter. Under the droop characteristic between the injected frequency and output DC current, a feedback mechanism is generated to realize the accurate current sharing. On this basis, a reactive power-voltage limiter link and virtual negative impedance are added. Under the interaction of the two links, the bus voltage drop caused by line impedances can be almost completely eliminated. This method does not need any communication or to change the hardware structure. The controller design process is presented in detail along with a system stability analysis. Finally, the feasibility and effectiveness of the proposed control strategy are validated by the results obtained from simulations and experiments.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8453
Author(s):  
Ki Ryong Kim ◽  
Sangjung Lee ◽  
Jong-Pil Lee ◽  
Jaesik Kang

This paper proposes an enhanced control strategy for mitigating state-transition oscillations in active and reactive power responses of self-synchronized converter system to secure the islanded power system stability. The self-synchronized converter is well known for “grid-forming” that is able to operate to stand-alone mode (SAM) providing grid voltage and frequency without phase synchronization units. Although the grid-forming (GFM) is self-synchronized, the inherent synchronization principle causes system degradation in which should maintain a point of common coupling (PCC) voltage for critical loads as well as transitions from grid-connected mode (GCM) to SAM and vice versa. Therefore, this paper focuses on resolving the inherent oscillatory issues in GFM self-synchronized converter system (especially adopted ‘synchronverter’ principle), and proposes a control strategy for controllability improvement based on stability analysis for smooth state-transition under islanded power system. The efficacy of the proposed control method is verified through a high-fidelity electromagnetic transient (EMT) simulation with case studies on 30kW synchronverter system and further experimental hardware-in-loop system (HILS) test with Opal-RT (OP-5707) platform.


2021 ◽  
Vol 6 (1) ◽  
pp. 61-74
Author(s):  
Xiaoshu Zan ◽  
Hang Lin ◽  
Guanqun Xu ◽  
Tiejun Zhao ◽  
Yi Gong

Abstract To solve motor heating and life shortening of parallel switched reluctance generator (SRG) induced by uneven output currents due to different external characteristics, we generally adopt current sharing control (CSC) to make each parallel generator undertake large load currents on average to improve the reliability of parallel power generation system. However, the method usually causes additional loss of power because it does not consider the efficiency characteristics of each parallel generator. Therefore, with the efficiency expression for the parallel system of SRG established and analysed, the control strategy based on differential evolution (DE) algorithm is proposed as a mechanism by which to enhance generating capacity and reliability of multi-machine power generation from the perspective of efficiency optimisation. We re-adjust the reference current of each parallel generator to transform the working point of each generator and implement the efficiency optimisation of parallel system. The performance of the proposed control method is evaluated in detail by the simulation and experiment, and comparison with traditional CSC is carried out as well.


Author(s):  
Sara Yahia Altahir Mohamed ◽  
Xiangwu Yan

<p>A new power sharing method of a virtual sychronous generator control based inverters is introduced in this paper. Since virtual synchronous generator has virtual inertia and damping properties, it significantly enhances the grid stability. However, its output power considerably affects by the line impedance. Thus, in this paper, the relation between the droop control and the line impedance is analyzed at first. Then, by appling an improved droop control strategy to an inverter based on the virtual sychronous generator control, achieving proportional active and reactive power sharing unaffected by the line impedance is realized. The result shows that a smooth response is achieved. As well as, the voltage drop caused by the line impedance is totally compensated. As a result, the system stability is furtherly improved. At last, the effectiveness of the proposed method is verified through MATLAB/Simulink.</p>


2013 ◽  
Vol 336-338 ◽  
pp. 547-550
Author(s):  
Ji Hong Zhang ◽  
Zhen Kui Wu ◽  
Hua Li ◽  
Han Shan Li

Micro grid may exert adequately distributed generation efficiency, and that wind Photovoltaic and Energy Storage is a key equipment in the micro grid. Aiming at the distributed generation existing intermittence and randomicity characteristic, the paper discussed the micro grid P/Q control method under the connection grid state and the micro grid U/F control method under the disconnection grid state. It also studied the distributed generation parameters variational law under the micro grid different run mode, and built the correlative mathematics model and tested by simulation. The results show: the control strategy ensured the mice grid running stably, and achieved the system anticipative design request, and offered theory foundation for the distributed generation extend application.


2015 ◽  
Vol 798 ◽  
pp. 261-265
Author(s):  
Miao Yu ◽  
Chao Lu

Identification and control are important problems of power system based on ambient signals. In order to avoid the model error influence of the controller design, a new iterative identification and control method is proposed in this paper. This method can solve model set and controller design of closed-loop power system. First, an uncertain model of power system is established. Then, according to the stability margin of power system, stability theorem is put forward. And then controller design method and the whole algorithm procedure are given. Simulation results show the effective performance of the proposed method based on the four-machine-two-region system.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5307
Author(s):  
Yeying Tao ◽  
Wei Jiang ◽  
Bin Han ◽  
Xiaoqing Li ◽  
Ying Luo ◽  
...  

A piecewise frequency control (PFC) strategy is proposed in this paper for coordinating vibration isolation and positioning of supporting systems under complex disturbance conditions, such as direct and external disturbances. This control strategy is applied in an active-passive parallel supporting system, where relative positioning feedback for positioning and absolute velocity feedback for active vibration isolation. The analysis of vibration and deformation transmissibility shows that vibration control increases low-frequency position error while positioning control amplifies high-frequency vibration amplitude. To overcome this contradiction across the whole control bandwidth, a pair of Fractional-Order Filters (FOFs) is adopted in the PFC system, which increases the flexibility in the PFC design by introducing fraction orders. The system stability analysis indicates that the FOFs can provide a better stability margin than the Integral-Order Filters (IOFs), so the control gains are increased to get a better performance on the AVI and positioning. The PFC based on FOFs can suppress the peak amplitude at the natural frequency which cannot be avoided when using the IOFs. The constrained nonlinear multivariable function is formed by the required performance and the stability of the system, then the controller parameters are optimized effectively. Lastly, the effectiveness of the proposed method is verified by experiments.


2012 ◽  
Vol 516-517 ◽  
pp. 1722-1727 ◽  
Author(s):  
Wei Jun Yun ◽  
Gang Yao ◽  
Li Dan Zhou ◽  
Chen Chen ◽  
Jun Min Pan

Nowadays Static Synchronous Compensator (STATCOM) has gradually become one of the representative techniques in the field of dynamic reactive power compensation in the power distribution system. This paper analyzed the topology and the voltage imbalance problem of the up and down capacitors on DC side of the three-phase four-wire STATCOM. In allusion to the imbalance problem of neutral point, a novel control strategy based on the control of zero-sequence current was proposed. By the triple close-loop control strategy, the STATCOM can achieve great control accuracy and dynamic performance. Simulation result proves that the proposed control method is effective.


Sign in / Sign up

Export Citation Format

Share Document