scholarly journals Transient Simulation of Underground Pumped Storage Hydropower Plants Operating in Pumping Mode

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1781 ◽  
Author(s):  
Javier Menéndez ◽  
Jesús M. Fernández-Oro ◽  
Mónica Galdo ◽  
Jorge Loredo

The increasing penetration of variable renewable energies (VRE) in the European electricity mix requires flexible energy storage systems (ESS), such as pumped storage hydropower (PSH). Disused mining voids from deep closed mines may be used as subsurface reservoirs of underground pumped-storage hydropower (UPSH) plants. Unlike conventional PSH plants, the air pressure in UPSH plants is variable and it differs from the atmospheric conditions. In this paper, the hydraulic transient process of an UPSH plant operating in pumping mode was investigated and a preliminary thermodynamic analysis of the closed surge tank was carried out. Analytical and CFD three-dimensional numerical simulations based on the volume of fluid (VOF) model with two-phase flow have been performed for analyzing the transient process. In the transient simulation, air and water are considered as ideal gas and compressible liquid, respectively. Different guide vanes closing schemes have been simulated. The obtained results show that the dimensioning of underground reservoir, surge tank, and air ducts is essential for ensuring the hydraulic performance and optimizing the operation of UPSH plants. The static pressure in the air duct, surge tank and lower reservoir reaches −1.6, 112.8 and −4 kPa, respectively, while a heat flux of −80 W was obtained through the surge tank walls.

1998 ◽  
Vol 53 (6) ◽  
pp. 801-811 ◽  
Author(s):  
Q. H. Tran ◽  
D. Ferre ◽  
C. Pauchon ◽  
J. P. Masella

Author(s):  
Christoph Steinhausen ◽  
Grazia Lamanna ◽  
Bernhard Weigand ◽  
Rolf Stierle ◽  
Joachim Groß ◽  
...  

The disintegration process of liquid fuel within combustion chambers is one of the most important parameters forefficient and stable combustion. Especially for high pressures exceeding the critical value of the injected fluids the mixing processes are not fully understood yet. Recently, different theoretical macroscopic models have been introduced to understand breakdown of the classical two phase regime and predict the transition from evaporation to a diffuse-mixing process. In order to gain deeper insight into the physical processes of this transition, a parametric study of free-falling n-pentane droplets in an inert nitrogen atmosphere is presented. Atmospheric conditions varied systematically from sub- to supercritical values with respect to the fluid properties. An overlay of a diffuse lighted image with a shadowgram directly in the optical setup (front lighted shadowgraphy) was applied to simultaneously detect the presence of a material surface of the droplet as well as changes in density gradients in the surrounding atmosphere. The experimental investigation illustrates, that the presence of a material surface cannot be shown by a direct shadowgram. However, reflections and refractions caused by diffuse ambient illumination are able to indicate the presence of a material surface. In case of the supercritical droplet injections in this study, front lighted shadowgraphy clearly revealed the presence of a material surface, even when the pre-heated droplets are released into a supercritical atmosphere. This detection of the droplet interface indicates, that the droplet remains subcritical in the region of interest, even though it is injected into a supercritical atmosphere. Based on the adiabatic mixing assumption recent Raman-scattering results in the wake of the droplet are re-evaluated to compute the temperature distribution. Presented experimental findings as well as the re-evaluation of recent Raman scattering results are compared to thermodynamic models to predict the onset of diffuse-mixing and supercritical disintegration of the droplet. Additionally, a one dimensional evaporation model is used to evaluate the validity of the adiabatic mixing assumption in the estimation of the droplet temperature. The presented findings contribute to the understanding of recent theoretical models for prediction of spray and droplet disintegration and the onset of diffuse-mixing processes.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4635


2021 ◽  
Author(s):  
M. Mohseni ◽  
C. Guedes Soares

Abstract The wave interaction with cylinders placed in proximity results in significant modification of the wave field, wave-induced processes, and wave loading. The evaluation of such a complex wave regime and accurate assessment of the wave loading requires an efficient and accurate numerical model. Concerning the wave scattering types identified by Swan et al. (2015) and lateral progressive edge waves, this paper presents the application of a two-phase Computational Fluid Dynamics (CFD) model to carry out a detailed investigation of nonlinear wave field surrounding a pair of columns placed in the tandem arrangement in the direction of wave propagation and corresponding harmonics. The numerical analysis is conducted using the Unsteady Reynolds-Averaged Navier-Stokes/VOF model based on the OpenFOAM framework combined with the olaFlow toolbox for wave generation/absorption. For the simulations, the truncated cylinders are assumed vertical and surface piercing with a circular cross-section subjected to regular, non-breaking fifth-order Stokes waves propagating with moderate steepness in deep water. Primarily, the numerical model is validated with experimental data provided by ITTC (OEC)[1] for a single cylinder. Future, the given simulations are conducted for different centre-to-centre distances between the tandem large cylinders. The results show the evolution of a strong wave diffraction pattern and consequently high wave amplification harmonics around cylinders are apparent.


2013 ◽  
Vol 737 ◽  
pp. 146-175 ◽  
Author(s):  
S. LeMartelot ◽  
R. Saurel ◽  
O. Le Métayer

AbstractExact compressible one-dimensional nozzle flow solutions at steady state are determined in various limit situations of two-phase liquid–gas mixtures. First, the exact solution for a pure liquid nozzle flow is determined in the context of fluids governed by the compressible Euler equations and the ‘stiffened gas’ equation of state. It is an extension of the well-known ideal-gas steady nozzle flow solution. Various two-phase flow models are then addressed, all corresponding to limit situations of partial equilibrium among the phases. The first limit situation corresponds to the two-phase flow model of Kapila et al. (Phys. Fluids, vol. 13, 2001, pp. 3002–3024), where both phases evolve in mechanical equilibrium only. This model contains two entropies, two temperatures and non-conventional shock relations. The second one corresponds to a two-phase model where the phases evolve in both mechanical and thermal equilibrium. The last one corresponds to a model describing a liquid–vapour mixture in thermodynamic equilibrium. They all correspond to two-phase mixtures where the various relaxation effects are either stiff or absent. In all instances, the various flow regimes (subsonic, subsonic–supersonic, and supersonic with shock) are unambiguously determined, as well as various nozzle solution profiles.


Author(s):  
Ashraf Ibrahim ◽  
Mark Wendel ◽  
David Felde ◽  
Bernard Riemer

In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE2). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at 1.66 mg/min helium gas flow rate and different mercury velocities. The experimental and computational results show a two-stage bubble formation in stagnant mercury. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement.


Author(s):  
Seong Gu Kim ◽  
Seong Kuk Cho ◽  
Jeong Ik Lee ◽  
Jekyoung Lee ◽  
Si Woo Lee ◽  
...  

From the observation of previous experimental results, it was recognized that the amount of external losses at the external flow paths can be substantial. Understanding the external loss mechanisms, and reducing the external losses are crucial to the design of a high performance S-CO2 compressor. Therefore, this study first focused on verifying the existing external loss models by estimating the internal loss accurately through a high fidelity CFD calculation and then substituting from the total losses. By analyzing the CFD result and energy balance data obtained from the experiment, the authors are suggesting the best combination of the external loss models for the S-CO2 compressor. This is followed by the investigation of the condensation effect in the impeller by utilizing a two-phase VOF model with metastable properties. As a result, it is re-confirmed that there is a negligible amount of condensation effect.


Author(s):  
Pasquale G. Fabio Filianoti ◽  
Luana Gurnari

U-OWCs are Wave Energy Converters belong in to the family of Oscillating Water Column. The interaction between waves and a U-OWC breakwater produces an unknown pressure distribution on the breakwater wall, due to the motion inside the plant. In order to evaluate the force acting on a U-OWC breakwater produced by regular waves, we carried out an experiment in a 2D numerical flume. The computational domain is equipped by a piston-type wavemaker, in the left extremity side and a U-OWC breakwater on the opposite side. The water-air interaction is taken into account by means of the Volume Of Fluid (VOF) model implemented in the commercial CFD code Ansys Fluent. Both air and water flow fields are assumed to be unsteady and are computed by solving the Reynolds-Averaged Navier-Stokes (RANS) equations. In the numerical model, air is considered as an ideal gas, in order to take into account the compressibility inside the plenum chamber. Results were compared with a theoretical model on a traditional vertical breakwater and experimental results obtained through an experiment directly at sea, off the beach of Reggio Calabria, in the eastern coast of the Straits of Messina (Southern Italy). As observed in the physical experiment at sea, the pressure distribution are strongly influenced by the absorption of the plant. Indeed, in case of high performance of the U-OWC, we found a deformation of the pressure distribution in respect to the theoretical one, especially near the outer opening of the plant. This deformation produces a lower in line force on the structure.


Sign in / Sign up

Export Citation Format

Share Document