scholarly journals Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3789
Author(s):  
Svetlana A. Kulikova ◽  
Sergey S. Danilov ◽  
Kseniya Yu. Belova ◽  
Anastasiya A. Rodionova ◽  
Sergey E. Vinokurov

The key task in the solidification of high-level waste (HLW) into a magnesium potassium phosphate (MPP) compound is the immobilization of mobile cesium isotopes, the activity of which provides the main contribution to the total HLW activity. In addition, the obtained compound containing heat-generating radionuclides can be significantly heated, which increases the necessity of its thermal stability. The current work is aimed at assessing the impact of various methodological approaches to HLW solidification on the thermal stability of the MPP compound, which is evaluated by the mechanical strength of the compound and its resistance to cesium leaching. High-salt surrogate HLW solution (S-HLW) used in the investigation was prepared for solidification by adding sorbents of various types binding at least 93% of 137Cs: ferrocyanide K-Ni (FKN), natural zeolite (NZ), synthetic zeolite Na-mordenite (MOR), and silicotungstic acid (STA). Prepared S-HLW was solidified into the MPP compound. Wollastonite (W) and NZ as fillers were added to the compound composition in the case of using FKN and STA, respectively. It was found that heat treatment up to 450 °C of the compound containing FKN and W (MPP-FKN-W) almost did not affect its compressive strength (about 12–19 МPa), and it led to a decrease of high compressive strength (40–50 MPa) of the compounds containing NZ, MOR, and STA (MPP-NZ, MPP-MOR, and MPP-STA-NZ, respectively) by an average of 2–3 times. It was shown that the differential leaching rate of 137Cs on the 28th day from MPP-FKN-W after heating to 250 °C was 5.3 × 10−6 g/(cm2∙day), however, at a higher temperature, it increased by 20 and more times. The differential leaching rate of 137Cs from MPP-NZ, MPP-MOR, and MPP-STA-NZ had values of (2.9–11) × 10−5 g/(cm2∙day), while the dependence on the heat treatment temperature of the compound was negligible.

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3421 ◽  
Author(s):  
Svetlana A. Kulikova ◽  
Sergey E. Vinokurov

The manuscript presents the results of the development of new material for high-level waste (HLW) management: the magnesium potassium phosphate (MKP) compound. The possibility of using zeolite (Sokyrnytsya deposit) to increase the mechanical, thermal, and hydrolytic resistance of this compound with immobilized HLW was studied. The main component of the used natural zeolite is a mineral of the clinoptilolite–heulandite series, and quartz, microcline, and clay minerals (illite, sepiolite, and smectite) are present as impurities. The compressive strength of the compound, containing at least 4.2 wt % zeolite, is about 25 MPa. Compound containing 28.6 wt % zeolite retains high compressive strength (at least 9.0 MPa), even after heat treatment at 450 °C. The adding of zeolite to the composition of the compound increases its hydrolytic stability, while the leaching rate of the mobile nuclides 137Cs and 90Sr decreases up to one order of values. Differential leaching rate of radionuclides from the compound containing 28.6 wt % zeolite is 2.6 × 10−7 for 137Cs, 2.9 × 10−6 for 90Sr, 1.7 × 10−9 for 239Pu, and 2.9 × 10−9 g/(cm2∙day) for 241Am. Thus, the properties of the resulting compound correspond to the requirements for solidified HLW in Russia.


Author(s):  
Lijie Qu ◽  
Zhenyu Wang ◽  
Jing Qian ◽  
Zhengbin He ◽  
Songlin Yi

Abstract Acidic aluminum sulfate hydrolysis solutions can be used to catalyze the thermal degradation of wood in a mild temperature environment, and thus reduce the temperature required for heat treatment process. To improve the dimensional and thermal stability of Chinese fir during heat treatment at 120 °C, 140 °C and 160 °C, this study investigated the effects of soaking pretreatment with 5%, 10% and 15% aluminum sulfate on the chemical and structural changes of the heat-treated Chinese fir. The results indicated that the samples treated at 15% aluminum sulfate concentration and 160 °C heat treatment achieved the best dimensional and thermal stability. Chemical analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the catalysis of aluminum sulfate resulted in degradation of hemicelluloses during the heat treatment, and an increase in the soaking concentration and heat treatment temperature also affected the thermal degradation of celluloses. The scanning electron microscope (SEM) and mass changes test results proved that the hydrolyzed aluminum flocs mainly adhered to the inner wall of the wood tracheid as spherical precipitates, and when the soaking concentration reached 10% and 15%, a uniform soaking effect could be achieved. The thermogravimetric (TG) analysis revealed the soaking pretreatment effectively improved the thermal stability of the heat-treated wood by physically wrapping and promoting the formation of a carbon layer on the wood surface during heat treatment. Thus, aluminum sulfate soaking pretreatment exerted a great effect on the dimensional and thermal stability of wood, allowing heat treatment to be performed at a lower temperature.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 148-159
Author(s):  
Nirajan Ojha ◽  
Iuliia Dmitrieva ◽  
Wilfried Blanc ◽  
Laeticia Petit

Even though the (75 NaPO3-25 CaF2) (in mol%) glass can be heat-treated into transparent glass-ceramic with Er3+ doped CaF2 crystals precipitating in the volume of the glass during heat-treatment, this glass was found to be a poor glass former, limiting its use as upconverter under 975 nm pumping. In this study, the impact of the glass composition on the thermal, optical and structural properties of the glass was investigated in order to understand how the glass composition can be tailored for the development of thermally stable upconverter glass-based material. The addition of MgO, Fe2O3 and Al2O3 in the NaPO3-CaF2 glass system increases the thermal stability of glass due to the depolymerization of the glass network. However, the changes in the glass composition also impacted on the nucleation and growth process. Indeed, CaF2 and other crystals were found in the newly developed glasses after heat-treatment leading to glass-ceramics with lower intensity of upconversion than the (75 NaPO3-25 CaF2) glass-ceramic used as a reference. Glasses were also prepared with different concentrations of Er2O3 and ErF3. These glasses were found to be promising as not only are they thermally stable, but they also exhibit green and red emission with high intensity under 975 nm pumping due to Er3+ clustering.


1993 ◽  
Vol 303 ◽  
Author(s):  
W. Chen ◽  
J. Lin ◽  
S. Banerjee ◽  
J. Lee

ABSTRACTThe effects of heat treatment of polysilicon and amorphous Si films on their microstructure and thermal stability of polycides formed on these films have been studied. The number of grain boundaries decreases after pre-silicidation heat treatment in polysilicon due to grain growth but increases in amorphous Si due to nucleation. Since the thermal stability of CoSi2 polycide films was found to be closely related to the number of grain boundaries in the underlying silicon substrate, pre-silicidation heat treatments degrade the thermal stability of CoSi2 on as-deposited amorphous Si and improve the thermal stability of CoSi2 on asdeposited polysilicon. Doping does not have as pronounced an effects as substrate microstructure on CoSi21 polycide thermal stability, especially when dopants are introduced after silicidation by ion implantation.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450207 ◽  
Author(s):  
Kameel Arshad ◽  
Ming-Yue Zhao ◽  
Yue Yuan ◽  
Ying Zhang ◽  
Zhang-Jian Zhou ◽  
...  

The thermal stability is important for tungsten based alloys as plasma facing materials to survive against high heat flux in fusion reactors. In this work, the thermal stability of W-5%V alloy fabricated following a powder metallurgy route by spark plasma sintering technique has been studied. To investigate the impact of temperature on the mechanical properties and microstructures, the alloy was subjected to heat treatment for 2 h over the temperature range 900–1500°C in a pure argon furnace. The micro-hardness values of the heat treated alloys were highly stable as compared to pure tungsten. A slight decrease flexural strength was observed with increasing annealing temperature. The maximum change flexural strength at the highest treated temperature was noted about 14% lower. The morphology analyses of the crack surfaces by scanning electron microscopy did not identify a drastic change in tungsten grain size, after heat treatment. The results indicate that the addition of vanadium in tungsten improves the overall thermal stability of microstructures and mechanical properties.


2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

2021 ◽  
Vol 875 ◽  
pp. 160055
Author(s):  
Hua Guo ◽  
Fawei Tang ◽  
Yong Liu ◽  
Zhi Zhao ◽  
Hao Lu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


Sign in / Sign up

Export Citation Format

Share Document