scholarly journals Methodological Approach for 1D Simulation of Port Water Injection for Knock Mitigation in a Turbocharged DISI Engine

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4297
Author(s):  
Federico Millo ◽  
Fabrizio Gullino ◽  
Luciano Rolando

In the upcoming years, more challenging CO2 emission targets along with the introduction of more severe Real Driving Emissions limits are expected to foster the development and the exploitation of innovative technologies to further improve the efficiency of automotive Spark Ignition (SI) engines. Among these technologies, Water Injection (WI), thanks to its knock mitigation capabilities, can represent a valuable solution, although it may significantly increase the complexity of engine design and calibration. Since, to tackle such a complexity, reliable virtual development tools seem to be mandatory, this paper aims to describe a quasi-dimensional approach to model a Port Water Injection (PWI) system integrated in a Turbocharged Direct Injection Spark Ignition (T-DISI) engine. Through a port-puddling model calibrated with 3D-CFD data, the proposed methodology was proven to be able to properly replicate transient phenomena of water wall film formation, catching cycle by cycle the amount of water that enters into the cylinder and is therefore available for knock mitigation. Moreover, when compared with experimental measurements under steady state operating conditions, this method showed good capabilities to predict the impact of the water content on the combustion process and on the knock occurrence likelihood.

Author(s):  
Nicolas Iafrate ◽  
Anthony Robert ◽  
Jean-Baptiste Michel ◽  
Olivier Colin ◽  
Benedicte Cuenot ◽  
...  

Downsized spark ignition engines coupled with a direct injection strategy are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the combustion process may be affected by local heterogeneities caused by the interaction between the spray and turbulence. The aim for car manufacturers of such engine strategy is to create, for mid-to-high speeds and mid-up-high loads, a mixture which is as homogeneous as possible. However, although injection occurs during the intake phase, which favors homogeneous mixing, local heterogeneities of the equivalence ratio are still observed at the ignition time. The analysis of the mixture preparation is difficult to perform experimentally because of limited optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) are complementary tools for the understanding and analysis of unsteady phenomena. The paper presents the LES study of the impact of direct injection on the mixture preparation and combustion in a spark ignition engine. Numerical simulations are validated by comparing LES results with experimental data previously obtained at IFPEN. Two main analyses are performed. The first one focuses on the fuel mixing and the second one concerns the effect of the liquid phase on the combustion process. To highlight these phenomena, simulations with and without liquid injection are performed and compared.


2009 ◽  
Vol 13 (3) ◽  
pp. 23-33 ◽  
Author(s):  
Samad Jafarmadar ◽  
Shram Khalilarya ◽  
Sina Shafee ◽  
Ramin Barzegar

This work is presented to study the effect of spray impinging on the combustion process and emissions in a direct injection diesel engine at various engine speeds. Computations are carried out using a three-dimensional modeling for sprays, spray-wall interactions, flow field, emission, and combustion process. Results indicate an increase in engine speed leads to increased spray impinging (wall film formation), turbulence intensity and average wall temperature in cylinder. The enhanced air/fuel mixing and intensified evaporation of wall film decreases soot emission by reducing the extent of the fuel rich regions specially in impinging zones. Also at higher engine speeds, combustion is delayed and fuel is consumed in a shorter time period by the enhanced air and fuel mixing. The shorter combustion duration provides less available time for soot and NOx formations. However, only a few attempts have been made to address the effect of impingement of spray with piston walls on the emissions and combustion process. The results of model in addition to approving the corresponding data in the literature are also compared with the experimental data and shown good agreement.


Author(s):  
Cheolwoong Park ◽  
Seungmook Oh ◽  
Taeyoung Kim ◽  
Heechang Oh ◽  
Choongsik Bae

Today, we are faced with the problems of global warming and fossil fuel depletion, and they have led to the enforcement of new emissions regulations. Direct-injection spark-ignition engines are a very promising technology that can comply with the new regulations. These engines offer the advantages of better fuel economy and lower emissions than conventional port-injection engines. The use of LPG as the fuel reduces carbon emissions because of its vaporization characteristics and the fact that it has lower carbon content than gasoline. An experimental study was carried out to investigate the combustion process and emission characteristics of a 2-liter spray-guided LPG direct-injection engine under lean operating conditions. The engine was operated at a constant speed of 2000 rpm under 0.2-MPa brake mean effective pressure, which corresponds to a common operation point of a passenger vehicle. Combustion stability, which is the most important component of engine performance, is closely related to the operation strategy and it significantly influences the degree of fuel consumption reduction. In order to achieve stable combustion with a stratified LPG mixture, an inter-injection spark ignition (ISI) strategy, which is an alternative control strategy to two-stage injection, was employed. The effects of the compression ratio on fuel economy were also assessed; due to the characteristics of the stratified LPG mixture, the fuel consumption did not reduce when the compression ratio was increased.


2018 ◽  
Vol 20 (7) ◽  
pp. 706-717 ◽  
Author(s):  
Jian Gao ◽  
Tang-Wei Kuo

Soot emissions from internal combustion engines represent a major challenge to engine manufactures with ever most stringent emission regulations, not only in soot mass yielded but also in soot particle number. For example, a particulate number standard has been introduced in 2011 with Euro 5b for diesel engines and in 2014 with Euro 6 for petrol engines (a limit of 6 × 1011/km). Soot models provide a detailed insight into soot evolution processes and are thus an essential tool in today’s advanced engine designs. Therefore, continuous efforts are made to develop more physically based engine soot models and improve the prediction accuracy. The primary objective of this work is to identify and demonstrate the critical parameters for accurate soot predictions in internal combustion engine applications using the high-fidelity detailed soot model from an engineering point of view. A detailed soot model based on sectional method was used to solve the soot process in diesel and spark ignition direct injection gasoline engines. A series of sensitivity analyses were carried out to evaluate the importance and significance of wall boundary conditions, wall film formation and vaporization, multi-component fuel surrogate, and soot transport process in engine exhaust on soot predictions. The predicted results were compared in details to engine-out measurements in terms of soot mass, number density, and size distributions under various operating conditions. The model results demonstrate that the correct description of the spray–wall interaction and wall film vaporization, as well as the soot transport processes in full engine cycle, is critical for achieving reliable predictive capabilities in engine simulations, especially for spark ignition direct injection gasoline engines. The findings should help engineers in this field for more accurate soot predictions in engine simulations.


Author(s):  
Cheolwoong Park ◽  
Seungmook Oh ◽  
Taeyoung Kim ◽  
Heechang Oh ◽  
Choongsik Bae

Today, we are faced with the problems of global warming and fossil fuel depletion, and they have led to the enforcement of new emissions regulations. Direct-injection spark-ignition engines are a very promising technology that can comply with the new regulations. These engines offer the advantages of better fuel economy and lower emissions than conventional port-injection engines. The use of liquefied petroleum gas (LPG) as the fuel reduces carbon emissions because of its vaporization characteristics and the fact that it has lower carbon content than gasoline. An experimental study was carried out to investigate the combustion process and emission characteristics of a 2 l spray-guided LPG direct-injection engine under lean operating conditions. The engine was operated at a constant speed of 2000 rpm under 0.2 MPa brake mean effective pressure (BMEP), which corresponds to a common operation point of a passenger vehicle. Combustion stability, which is the most important component of engine performance, is closely related to the operation strategy and it significantly influences the degree of fuel consumption reduction. In order to achieve stable combustion with a stratified LPG mixture, an interinjection spark ignition (ISI) strategy, which is an alternative control strategy to two-stage injection, was employed. The effects of the compression ratio on fuel economy were also assessed; due to the characteristics of the stratified LPG mixture, the fuel consumption did not reduce when the compression ratio was increased.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


2019 ◽  
Vol 9 (19) ◽  
pp. 4133 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Wang ◽  
Han ◽  
Chen

Engine knock has become the prime barrier to significantly improve power density and efficiency of the engines. To further look into the essence of the abnormal combustion, this work studies the working processes of normal combustion and knock combustion under practical engine operating conditions using a three-dimensional computation fluid dynamics (CFD) fluid software CONVERGE (Version 2.3.0, Convergent Science, Inc., Madison, USA). The results show that the tumble in the cylinder is gradually formed with the increase of the valve lift, enhances in the compression stroke and finally is broken due to the extrusion of the piston. The fuel droplets gradually evaporate and move to the intake side under the turbulent and high temperature in the cylinder. During the normal combustion process, the flame propagates faster on the intake side and it facilitates mixture in cylinder combustion. During the knock combustion simulation, the hotspots near the exhaust valve are observed, and the propagating detonation wave caused by multiple hotspots auto-ignition indicates significant effects on knock intensity of in-cylinder pressure.


2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2600
Author(s):  
Kaushal Nishad ◽  
Marcus Stein ◽  
Florian Ries ◽  
Viatcheslav Bykov ◽  
Ulrich Maas ◽  
...  

The selective catalytic reduction (SCR) methodology is notably recognized as the widely applied strategy for NOX control in exhaust after-treatment technologies. In real SCR systems, complex unsteady turbulent multi-phase flow phenomena including poly-dispersed AdBlue® spray evolve with a wide ranging relative velocity between the droplet phase and carrier gas phase. This results from an AdBlue® spray that is injected into a mixing pipe which is cross-flowing by a hot exhaust gas. To reduce the complexity while gaining early information on the injected droplet size and velocity needed for a minimum deposition and optimal conversion, a single droplet with a specified diameter is addressed to mimic a spray featuring the same Sauter Mean Diameter. For that purpose, effects of turbulent hot cross-flow on thermal decomposition processes of a single AdBlue® droplet are numerically investigated. Thereby, a single AdBlue® droplet is injected into a hot cross-flowing stream within a mixing pipe in which it may experience phase change processes including interaction with the pipe wall along with liquid wall–film and possible solid deposit formation. First of all, the prediction capability of the multi-component evaporation model and thermal decomposition is evaluated against the detailed simulation results for standing droplet case for which experimental data is not available. Next, exploiting Large Eddy Simulation features the effect of hot turbulent co- and cross-flowing streams on the dynamic droplet characteristics and on the droplet/wall interaction is analyzed for various droplet diameters and operating conditions. This impact is highlighted in terms of droplet evaporation time, decomposition efficiency, droplet trajectories and wall–film formation. It turns out that smaller AdBlue® droplet diameter, higher gas temperature and relative velocity lead to shorter droplet life time as the droplet evaporates faster. Under such conditions, possible droplet/wall interaction processes on the pipe wall or at the entrance front of the monolith may be avoided. Since the ammonia (NH3) gas generated by urea decomposition is intended to reduce NOX emission in the SCR system, it is apparent for the prediction of high NOX removal performance that UWS injector system which allows to realize such operating conditions is favorable to support high conversion efficiency of urea into NH3.


Sign in / Sign up

Export Citation Format

Share Document