scholarly journals A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.

Biofuels derived from vegetable oils are known to be promising alternative fuels for diesel engines. The possibility of using mixtures of petroleum diesel fuel with rapeseed oil and rapeseed oil methyl ester as environmentally friendly motor fuels is considered. The practicability of changing the composition of these mixtures in accordance with the engine operating mode is shown. A technique for multicriteria optimization of the composition of such mixed biofuels is suggested. The basic characteristics of the optimal composition of these mixed biofuels are calculated. A device for regulating fuel’s composition is proposed. The basic characteristic of regulation of the blended biofuel composition realized by the device is presented. Keywords diesel engine; combustion chamber; oil diesel fuel; rapeseed oil; rapeseed oil methyl ester; biofuel mixture; ecological characteristics; exhaust gases toxicity


Author(s):  
Tak W. Chan ◽  
Wajid A. Chishty ◽  
Pervez Canteenwalla ◽  
David Buote ◽  
Craig R. Davison

Alternative fuels for aviation are now a reality. These fuels not only reduce reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer promise for environmental sustainability. While these alternative fuels meet the aviation fuels standards and their overall properties resemble those of the conventional fuel, they are expected to demonstrate different exhaust emissions characteristics because of the inherent variations in their chemical composition resulting from the variations involved in the processing of these fuels. This paper presents the results of back-to-back comparison of emissions characterization tests that were performed using three alternative aviation fuels in a GE CF-700-2D-2 engine core. The fuels used were an unblended synthetic kerosene fuel with aromatics (SKA), an unblended Fischer–Tropsch (FT) synthetic paraffinic kerosene (SPK) and a semisynthetic 50–50 blend of Jet A-1 and hydroprocessed SPK. Results indicate that while there is little dissimilarity in the gaseous emissions profiles from these alternative fuels, there is however a significant difference in the particulate matter emissions from these fuels. These differences are primarily attributed to the variations in the aromatic and hydrogen contents in the fuels with some contributions from the hydrogen-to-carbon ratio of the fuels.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2017 ◽  
Vol 19 (4) ◽  
pp. 614-640

The problem of reducing CO2 emissions from transport, a major contributor to the greenhouse effect, has become a growing concern for the scientific community and various international committees monitoring climate change. Energy savings in the transport sector are a key factor towards rational management of oil reserves, while new trends in the automotive market have already been established, supported by research on efficient and environmentally-friendly technologies and alternative fuels to face fossil fuel dependency. The road transport sector is an important part for most developed economies but also a major source of pollutant emissions. In this framework, this paper focuses on transport emissions along the main road axis in Greece, connecting the country’s two largest urban areas, during the years 2008-2014, a period of prolonged recession. Based on traffic data collected at the toll stations along the highway, greenhouse gas and pollutant emissions were calculated using the COPERT4 emission estimation tool. According to the results, a sharp fall in emissions is observed largely due to traffic volume reductions, but also due to a prevailing trend for larger displacement vehicles and technologically improved vehicles with better environmental standards.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7764
Author(s):  
Alejandro Ortega ◽  
Konstantinos Gkoumas ◽  
Anastasios Tsakalidis ◽  
Ferenc Pekár

The 2030 Climate target plan of the European Commission (EC) establishes a greenhouse gases (GHG) emissions reduction target of at least 55% by 2030, compared to 1990. It highlights that all transport modes—road, rail, aviation and waterborne—will have to contribute to this aim. A smart combination of vehicle/vessel/aircraft efficiency improvements, as well as fuel mix changes, are among the measures that can reduce GHG emissions, reducing at the same time noise pollution and improving air quality. This research provides a comprehensive analysis of recent research and innovation in low-emission alternative energy for transport (excluding hydrogen) in selected European Union (EU)-funded projects. It considers the latest developments in the field, identifying relevant researched technologies by fuel type and their development phase. The results show that liquefied natural gas (LNG) refueling stations, followed by biofuels for road transport and alternative aviation fuels, are among the researched technologies with the highest investments. Methane-based fuels (e.g., compressed natural gas (CNG), LNG) have received the greatest attention concerning the number of projects and the level of funding. By contrast, liquefied petroleum gas (LPG) only has four ongoing projects. Alcohols, esters and ethers, and synthetic paraffinic and aromatic fuels (SPF) are in between. So far, road transport has the highest use of alternative fuels in the transport sector. Despite the financial support from the EU, advances have yet to materialize, suggesting that EU transport decarbonization policies should not consider a radical or sudden change, and therefore, transition periods are critical. It is also noteworthy that there is no silver bullet solution to decarbonization and thus the right use of the various alternative fuels available will be key.


2020 ◽  
Vol 8 (3) ◽  
pp. 185-198
Author(s):  
Roland Zink ◽  
Javier Valdes ◽  
Jane Wuth

To meet current targets for greenhouse gas emissions in Europe, emissions, especially those originating from the road transport sector, need to be reduced. Plans are to achieve this goal by substituting fossil fuel vehicles with electric vehicles (EVs). This article first discusses conceptually the impact of an increasing share of EVs on the electricity grid and suitable locations for charging stations with examples from a Case Study in Lower Bavaria. Secondly, the impact of purchase subsidies on EV purchases in Germany, a high-income country characterized by an important automotive industry and an increasing share of private vehicles is examined. To achieve this, yearly information on EV purchases were analyzed by applying the Synthetic Control Method. Combining data from different sources including the European Alternative Fuels Observatory, Eurostat, and the European Automobile Manufacturers' Association, an overall picture was developed. Results indicate a difference between private, semi-public, and public charging infrastructures. Its spatial distribution does not correspond to a specific development strategy. Moreover, EV subsidies have a limited effect in Germany when controlling for market size. Limiting the discussion to a trade-off between subsidizing infrastructures or EV purchases obviates the multidimensionality of the problem as neither of them may be sufficient to accelerate the transition per se. Furthermore, if electricity provided for EVs comes mainly from fossil carriers, the changes in the road transport sector will not yield the expected emission reductions. The transition towards renewables is directly intertwined with the effects of EVs on emission reductions in the road transport sector.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5950
Author(s):  
Dragiša Đorđić ◽  
Milan Milotić ◽  
Zoran Ćurguz ◽  
Slavko Đurić ◽  
Tihomir Đurić

The production of hydrocarbon fuel from waste engine oil is an excellent way to produce alternative fuels. The aim of the research in this paper is obtaining fuel with a mixture of waste engine oil (WMO) and diesel fuel that can be used as an alternative fuel for internal combustion engines and low power heat generators. With this goal in mind, tests were conducted to estimate the combustion parameters and emissions at a low heat output of 40 kW. Waste motor oils (WMO) and four of its diesel mixtures were used, varying in weight from 20% WMO to 50% WMO. Test results were analysed and compared with diesel fuel. Higher NO, CO and CO2 emissions were determined for WMO and its mixtures compared to diesel fuel. The flue gas temperature in the kiln was high for all WMO and diesel blends, which indicates the efficiency of the input energy. The absorption of flue gases in the scrubber with distilled water showed higher presence of sulphates, sulphides, nitrates and nitrites compared to allowable values.


Author(s):  
Tak W. Chan ◽  
Wajid A. Chishty ◽  
Pervez Canteenwalla ◽  
David Buote ◽  
Craig R. Davison

Alternative fuels for aviation are now a reality. These fuels not only reduce reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer promise for environmental sustainability. While these alternative fuels meet the aviation fuels standards and their overall properties resemble those of the conventional fuel, they are expected to demonstrate different exhaust emissions characteristics because of the inherent variations in their chemical composition resulting from the variations involved in the processing of these fuels. This paper presents the results of back-to-back comparison of emissions characterization tests that were performed using three alternative aviation fuels in a GE CF-700-2D-2 engine core. The fuels used were an unblended synthetic kerosene fuel with aromatics (SKA), an unblended Fischer Tropsch synthetic paraffinic kerosene (SPK) and a semi-synthetic 50-50 blend of Jet A-1 and hydroprocessed SPK. Results indicate that while there is little dissimilarity in the gaseous emissions profiles from these alternative fuels, there is however a significant difference in the particulate matter emissions from these fuels. These differences are primarily attributed to the variations in the aromatic and hydrogen contents in the fuels with some contributions from the hydrogen-to-carbon ratio of the fuels.


Author(s):  
Vikash Singh Yadav ◽  
Jai Vashisth ◽  
R. S. Desai

There is an increase demand in EV which will play a major role in future of road transport. While commercial Electric Vehicle existing today have their uptake has been limited due to limited battery range, lack of charging convenience and high purchasing cost. As cities expand and affluence rises, traffic congestion is becoming problematic. To respond to these core challenges facing the transportation sector, the E-highway is twice as efficient as internal combustion engines. The innovation includes transition from personal combustion powered vehicles towards grid-powered transportation. This innovation supplies trucks with power from overhead contact line. This reduces local air pollution and contributes significantly to the decarbonization of the transport sector.


2017 ◽  
Vol 46 (1) ◽  
pp. 16-21
Author(s):  
R. Sundara Raman ◽  
G. Sankara Narayanan ◽  
N. Manoharan ◽  
S. Sendilvelan

The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons along with the sharp escalation in the petroleum prices have simulated the search for alternatives to petroleum based fuels especially diesel and gasoline. Moreover, bulks of petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Though there are wide varieties of alternative fuels available the research has not yet provided the right renewable fuel to replace diesel. Vegetable oil due to their properties being close to diesel fuel may be a promising alternative for diesel engines. Due to their high viscosity, they cannot be directly used in a diesel engine. Transesterification is one method by which viscosity could be drastically reduced and the fuel could be adopted for use in diesel engine. Present investigation focuses on use of Rice Bran Oil in Diesel engine. Performance and exhaust emission characteristics of the engine have been evaluated. Esterified Rice Bran Oil has exhibited performance very close to that of diesel fuel. In the present work it is observed that, the NOX and unburned hydrocarbon emission decreases and carbon monoxide, particulate emission and smoke intensity increases with the use of biodiesel in diesel engine. When compared to non-esterified Rice Bran Oil, esterified Rice Bran Oil emits less smoke and therefore be regarded as an environment friendly fuel.


Sign in / Sign up

Export Citation Format

Share Document