scholarly journals Central Tunicate Swarm NFOPID-Based Load Frequency Control of the Egyptian Power System Considering New Uncontrolled Wind and Photovoltaic Farms

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3604
Author(s):  
Hady H. Fayek ◽  
Panos Kotsampopoulos

This paper presents load frequency control of the 2021 Egyptian power system, which consists of multi-source electrical power generation, namely, a gas and steam combined cycle, and hydro, wind and photovoltaic power stations. The simulation model includes five generating units considering physical constraints such as generation rate constraints (GRC) and the speed governor dead band. It is assumed that a centralized controller is located at the national control center to regulate the frequency of the grid. Four controllers are applied in this research: PID, fractional-order PID (FOPID), non-linear PID (NPID) and non-linear fractional-order PID (NFOPID), to control the system frequency. The design of each controller is conducted based on the novel tunicate swarm algorithm at each operating condition. The novel method is compared to other widely used optimization techniques. The results show that the tunicate swarm NFOPID controller leads the Egyptian power system to a better performance than the other control schemes. This research also presents a comparison between four methods to self-tune the NFOPID controller at each operating condition.

2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


2020 ◽  
Vol 9 (1) ◽  
pp. 1253-1260

In this paper work deals about the application of Grey Wolf Optimizer (GWO) for optimization of fractional order PID (FOPID) controlling device to the frequency disturbance, of system load in the one (or) single area non re-heated electrical system and also comparison to the non re-heated BBBC optimization outputs. In this BBBC optimization we have the two bounding cases (low & upper), they are before and after the perturbation cases. And also we observed that the BBBC output responses. After finding the BBBC outputs we observed that the settling time value of load frequency of BBBC is more when compared with the GWO. This problem is resolved by designing of FOPID via GWO algorithm. The Grey Wolf Optimization is well known meta-heuristic algorithm and has been previously used for optimization of various conventional PID and FOPID controllers. In this paper the GWO is used for optimization of FOPID controller to the load frequency variation in the electrical system for non reheated turbine electrical system .the execution outputs of the proposed controlled method also validated to the other existing techniques


Sign in / Sign up

Export Citation Format

Share Document