scholarly journals Multidisciplinary Approaches for Assessing a High Temperature Borehole Thermal Energy Storage Facility at Linköping, Sweden

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4379
Author(s):  
Max Hesselbrandt ◽  
Mikael Erlström ◽  
Daniel Sopher ◽  
Jose Acuna

Assessing the optimal placement and design of a large-scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre-site investigation for a potential high temperature borehole thermal energy storage (HT-BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT-BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT-BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT-BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre-investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low-Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone-based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT-BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.

2021 ◽  
Vol 11 (13) ◽  
pp. 6234
Author(s):  
Ciprian Neagoe ◽  
Ioan Albert Tudor ◽  
Cristina Florentina Ciobota ◽  
Cristian Bogdanescu ◽  
Paul Stanciu ◽  
...  

Microencapsulation of sodium nitrate (NaNO3) as phase change material for high temperature thermal energy storage aims to reduce costs related to metal corrosion in storage tanks. The goal of this work was to test in a prototype thermal energy storage tank (16.7 L internal volume) the thermal properties of NaNO3 microencapsulated in zinc oxide shells, and estimate the potential of NaNO3–ZnO microcapsules for thermal storage applications. A fast and scalable microencapsulation procedure was developed, a flow calorimetry method was adapted, and a template document created to perform tank thermal transfer simulation by the finite element method (FEM) was set in Microsoft Excel. Differential scanning calorimetry (DSC) and transient plane source (TPS) methods were used to measure, in small samples, the temperature dependency of melting/solidification heat, specific heat, and thermal conductivity of the NaNO3–ZnO microcapsules. Scanning electron microscopy (SEM) and chemical analysis demonstrated the stability of microcapsules over multiple tank charge–discharge cycles. The energy stored as latent heat is available for a temperature interval from 303 to 285 °C, corresponding to onset–offset for NaNO3 solidification. Charge–self-discharge experiments on the pilot tank showed that the amount of thermal energy stored in this interval largely corresponds to the NaNO3 content of the microcapsules; the high temperature energy density of microcapsules is estimated in the range from 145 to 179 MJ/m3. Comparison between real tank experiments and FEM simulations demonstrated that DSC and TPS laboratory measurements on microcapsule thermal properties may reliably be used to design applications for thermal energy storage.


Author(s):  
Jamie Trahan ◽  
Sarada Kuravi ◽  
D. Yogi Goswami ◽  
Muhammad Rahman ◽  
Elias Stefanakos

As the importance of latent heat thermal energy storage increases for utility scale concentrating solar power (CSP) plants, there lies a need to characterize the thermal properties and melting behavior of phase change materials (PCMs) that are low in cost and high in energy density. In this paper, the results of an investigation of the melting temperature and latent heat of two binary high temperature salt eutectics are presented. Melting point and latent heat are analyzed for a chloride eutectic and carbonate eutectic using simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analsysis (TGA). High purity materials were used and the handling procedure was carefully controlled to accommodate the hygroscopic nature of the chloride eutectic. The DSC analysis gives the values of thermal properties of the eutectics, which are compared with the calculated (expected/published) values. The thermal stability of the eutectics is also examined by repeated thermal cycling in a DSC and is reported in the paper along with a cost analysis of the salt materials.


Author(s):  
Donghyun Shin ◽  
Byeongnam Jo ◽  
Hyun-eun Kwak ◽  
Debjyoti Banerjee

The aim of this study is to investigate the enhancement of thermal properties of various high temperature nanofluids for solar thermal energy storage application. In concentrating solar power (CSP) systems, the thermo-physical properties of the heat transfer fluids (HTF) and the thermal energy storage (TES) materials are key to enhancing the overall system efficiency. Molten salts, such as alkali nitrates, alkali carbonates, or eutectics are considered as alternatives to conventional HTF to extend the capabilities of CSP. However, there is limited usage of molten salt eutectics as the HTF material, since the heat capacity of the molten salts are lower than that of conventional HTF. Nanofluid is a mixture of a solvent and nanoparticles. Well dispersed nanoparticles can be used to enhance thermo-physical properties of HTF. In this study, silica (SiO2) and alumina (Al2O3) nanoparticles as well as carbon nanotubes (CNT) were dispersed into a molten salt and a commercially available HTF. The specific heat capacity of the nanofluids were measured and applicability of such nanofluid materials for solar thermal storage applications were explored. Measurements performed using the carbonate eutectics and commercial HTF that are doped with inorganic and organic nano-particles show specific heat capacity enhancements exceeding 5–20% at concentrations of 0.05% to 2.0% by weight. Dimensional analyses and computer simulations were performed to predict the enhancement of thermal properties of the nanofluids. The computational studies were performed using Molecular Dynamics (MD) simulations.


Sign in / Sign up

Export Citation Format

Share Document