scholarly journals Raw Biogas Desulphurization Using the Adsorption-Absorption Technique for a Pilot Production of Agricultural Biogas from Pig Slurry in Poland

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5929
Author(s):  
Magdalena Kapłan ◽  
Kamila Klimek ◽  
Serhiy Syrotyuk ◽  
Ryszard Konieczny ◽  
Bartłomiej Jura ◽  
...  

The article reviews selected methods and techniques of agricultural biogas desulphurization. Presented is the current state of technological and measurement systems as well as raw biogas purification methods in terms of control and measurement-socio-economic aspects were also pointed out. On the example of a pilot agricultural biogas with the use of pig slurry, the required technical and technological criteria for the production and processing of agricultural biogas were indicated. The article presents the preliminary results of experimental studies on the course of changes in the volumetric composition of biogas on the basis of the average daily production of agricultural biogas.The amount of H2S in raw and purified biogas was analyzed with the proprietary biogas desulphurization method in terms of the process parameters. A novelty is the use of a developed carbon mixture (activated carbon) with turf ore (iron compounds), which allows for 100% desulfurization of raw agricultural biogas under process conditions for mesophilic fermentation. The measurement results show a clear influence of desulphurization using the proprietary adsorption-absorption technique-agricultural biogas.

2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2021 ◽  
Vol 1022 ◽  
pp. 80-86
Author(s):  
Mikhail G. Kholodnyak ◽  
Sergey A. Stelmakh ◽  
Evgeniy M. Shcherban ◽  
Mukhuma P. Nazhuev

The paper considers the current state of the mineral raw material base and the construction material market of the Rostov Region. The effect of various factors on the strain-stress behavior of local limestones has been investigated. The scientific and technical literary sources devoted to the processes of rock failure under various loads have been analyzed. The experimental studies have shown that the tested samples of limestone with a high content of cuboidal grains have characteristics comparable to those of the crushed granite stone. It has been concluded that the use of the Rostov Region limestones in the construction industry is competitive and feasible, provided the proper implementation of the engineering measures proposed in their production.


2016 ◽  
Vol 37 (4) ◽  
pp. 485-501 ◽  
Author(s):  
Józef Nastaj ◽  
Małgorzata Tuligłowicz ◽  
Konrad Witkiewicz

Abstract The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.


2019 ◽  
Vol 179 (4) ◽  
pp. 75-79
Author(s):  
Łukasz GRABOWSKI ◽  
Paweł KARPIŃSKI ◽  
Grzegorz BARAŃSKI

This paper presents the results of experimental studies of the opposed-piston diesel engine. This engine was designed during one of the stages of the research on a new-type drive unit for gyrocopter applications. In order to conduct research, a special test stand as well as control and measurement systems were developed. As part of the work on the engine, the fuel injection system, engine temperature control system and measurement systems were designed. In addition, a computer program has been developed for the fuel injection system control (injectors, valves fuel pressure regulators). The paper presents the results of the preliminary tests for a single value of engine speed (1500 rpm) and three values of load defined by torque. The measured value of the indicated pressure made it possible to calculate the maximum pressure. The results obtained from the bench tests were analyzed.


2021 ◽  
pp. 187-190
Author(s):  
D.А. Hakimov ◽  
I.V. Zhuk ◽  
M.K. Kievets

Experimental studies have been carried out to determine the sensitivity of a mobile scintillation gamma-spectrometer to radon-222 in mineral water samples for the selected measurement geometry and the minimum measurable activity of radon-222 in such samples. The measurement results of radon content in mineral water samples obtained using such gamma-spectrometer are presented too.


Author(s):  
Jan Zaucha ◽  
Michael Heinzinger ◽  
A Kulandaisamy ◽  
Evans Kataka ◽  
Óscar Llorian Salvádor ◽  
...  

Abstract Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein’s functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Samah Hashim Albayati ◽  
Malihe Masomian ◽  
Siti Nor Hasmah Ishak ◽  
Mohd Shukuri bin Mohamad Ali ◽  
Adam Leow Thean ◽  
...  

Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Christina-Luise Roß ◽  
Kerstin Nielsen ◽  
Jorita Krieger ◽  
Marieke Hoffmann ◽  
Karen Sensel-Gunke ◽  
...  

Depending on the quality of the input substrates, process parameters, and postfermentation treatments, digestates may contain a broad spectrum of potentially toxic elements. We suspected that these contents may vary on a broad scale even under seemingly stable process conditions at the biogas plant. Digestates from four biogas plants were therefore continuously analyzed for their contents of phosphorus, nitrogen, cadmium, copper, lead, and zinc over a period of six years. The input substrates varied between the plants (e.g., cattle and pig slurry and rye and maize silage), but were the same for each plant over the whole period. The N : P ratio of the digestates ranged from 2 to 24, with the digestate coming from cofermentation of pig slurry and energy crops (“DG Pig”) having the widest range of N : P ratio over the years. Heavy metal loads of all digestates and during all evaluations did not exceed the limits set by European or German legislation, but as previously expected, showed a large variability especially if cattle or pig manure were used as substrates. Copper content of Cattle slurry before digestion was 897.7 mg kg−1 DM in one case, and zinc content of DG Pig reached 590.2 mg kg−1 DM also once during the investigation. As a result, we strongly recommend to monitor especially phosphorus, copper, and zinc contents in digestates very closely and in short intervals.


2019 ◽  
Vol 65 (9) ◽  
pp. 4385-4406
Author(s):  
Shannon W. Anderson ◽  
Amanda Kimball

Performance measurement systems (PMSs) are used to diagnose and remediate problems, termed the “decision-facilitating” or feedback role of management control. We examine whether use of PMSs by individual decision makers is associated with better performance. Experimental studies have isolated individual-level effects of feedback on decision quality; however, it is difficult to extend these findings to natural settings. Archival and survey studies offer evidence on the association between the presence of PMSs and performance but have had limited success in measuring decision makers’ actual use of PMSs and addressing endogeneity of the decision to use PMSs. We use unobtrusively collected data on actual PMS use in 30 K–12 charter schools over three years to test whether teachers who make greater use of two PMSs are associated with greater growth in student learning. We find that teachers’ use of PMSs is associated with increased student learning, consistent with the premise that PMSs facilitate teacher interventions and improve student outcomes. The results are both statistically and materially significant, and they are better explained by PMS use than by selection effects of better teachers using PMSs. Consistent with the organization’s focus on “at-risk” students, the strongest effects of teachers’ use of one PMS are concentrated among the lowest-performing students. In sum, we find broad support for the thesis that the feedback role of PMSs is associated with meaningful performance improvement. This paper was accepted by Suraj Srinivasan, accounting.


2016 ◽  
Vol 856 ◽  
pp. 231-237 ◽  
Author(s):  
Max Lutter-Günther ◽  
Alexander Hofmann ◽  
Christoph Hauck ◽  
Christian Seidel ◽  
Gunther Reinhart

Laser Beam Melting (LBM) is an additive manufacturing process, which is increasingly applied for the production of end use parts. One advantage of this powder bed fusion technology lies in the high material efficiency in comparison with subtractive manufacturing processes (i. e. milling, lathing). However, only few experimental studies have been conducted on the material efficiency of LBM. For the accurate evaluation of the LBM material efficiency, empirical values for powder losses are required. Furthermore, a lack of terminology for waste types and powder conditions in the context of LBM impedes communication and research on the topic. The presented paper aims to increase the understanding of material efficiency and powder conditions in Laser Beam Melting. A quantitative analysis of waste types is presented for different LBM application scenarios. This sets a basis for the ecological evaluation and comparison with conventional manufacturing processes. In order to achieve the aim, a terminology is introduced for waste types and powder conditions in the context of powder bed-based additive processes. Therefore, considerations regarding powder quality are taken into account. For the quantification of powder losses, the experimental setup and measurement results are described. Furthermore, loss types and their significance are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document