scholarly journals Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6634
Author(s):  
Pradeep Vishnuram ◽  
Gunabalan Ramachandiran ◽  
Thanikanti Sudhakar Babu ◽  
Benedetto Nastasi

In the current scenario, power electronic device-based induction heating (IH) technologies are widely employed in domestic cooking, industrial melting and medical applications. These IH applications are designed using different converter topologies, modulation and control techniques. This review article mainly focuses on the modelling of half-bridge series resonant inverter, electrical and thermal model of IH load. This review also analyses the performance of the converter topologies based on the power conversion stages, switching frequency, power rating, power density, control range, modulation techniques, load handling capacity and efficiency. Moreover, this paper provides insight into the future of IH application, with respect to the adaptation of wide band-gap power semiconductor materials, multi-output topologies, variable-frequency control schemes with minimum losses and filters designed to improve source-side power factor. With the identified research gap in the literature, an attempt has also been made to develop a new hybrid modulation technique, to achieve a wide range of power control with high efficiency. A 100 W full-bridge inverter prototype is realised both in simulation and hardware, with various modulation schemes using a PIC16F877A microcontroller. The results are compared with existing techniques and the comparisons reveal that the proposed scheme is highly viable and effective for the rendered applications.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2136 ◽  
Author(s):  
Bartosz Gil ◽  
Jacek Kasperski

Theoretical investigations of the ejector refrigeration system using hydrofluoroolefins (HFOs) and hydrochlorofluoroolefin (HCFO) refrigerants are presented and discussed. A comparative study for eight olefins and R134a as the reference fluid was made on the basis of a one-dimensional model. To facilitate and extend the possibility of comparing our results, three different levels of evaporation and condensation temperature were adopted. The generator temperature for each refrigerant was changed in the range from 60 °C to the critical temperature for a given substance. The performed analysis shown that hydrofluoroolefins obtain a high efficiency of the ejector system at low primary vapor temperatures. For the three analyzed sets of evaporation and condensation temperatures (te and tc equal to 0 °C/25 °C, 6 °C/30 °C, and 9 °C/40 °C) the maximum Coefficient of Performance (COP) was 0.35, 0.365, and 0.22, respectively. The best performance was received for HFO-1243zf and HFO-1234ze(E). However, they do not allow operation in a wide range of generator temperatures, and, therefore, it is necessary to correctly select and control the operating parameters of the ejector.


2010 ◽  
Vol 19 (03) ◽  
pp. 581-595 ◽  
Author(s):  
D. KIRUBAKARAN ◽  
S. RAMA REDDY

A pulse-current converter topology for induction heating is simulated and implemented. The possibility and expediency of the pulse current for induction heating have been demonstrated. The converter comprises the input filter, input reactor, bridge rectifier, two power switches, two coils mutually coupled with the input reactor and the heating inductor (load), where the output power is controlled by a switching frequency. The steady-state analysis of the converter operation and its computer simulation has been performed. The simulation on the computer are shown to be in good agreement with the theoretical results. The following two goals have been achieved: (a) the analysis of the heating process with the pulse current has been performed; and (b) the appropriate scheme of the pulse-current supply has been developed. The scheme fulfills the requirements of modern power supplies: sine form of the input current, unity power factor, soft commutation and a wide range of output power. This configuration can be used for heating, annealing, melting and hardening in the power range of 250–300 kW.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1292
Author(s):  
Yifan Zhang ◽  
Chushan Li ◽  
David Xu ◽  
Wuhua Li ◽  
Jian Zhang ◽  
...  

Higher-voltage-standard and higher-power-rating aerospace power systems are being investigated intensively in the aerospace industry to address challenges in terms of improving emissions, fuel economy, and also cost. Multilevel converter topologies become attractive because of their higher efficiency under high-voltage and high-switching-frequency conditions. In this paper, an asymmetrical-voltage-level back-to-back multilevel converter is proposed, which consists of a five-level (5L) rectifier stage and a three-level (3L) inverter stage. Based on the comparison, such an asymmetrical back-to-back structure can achieve high efficiency and minimize the converter weight on both rectifier and inverter sides. A compact triple-surface-mounted heatsink structure is designed to realize high density and manufacturable thermal management. This topology and structure are evaluated with a full-rating prototype. According to the evaluation, the achieved power density is 2.61 kVA/kg, which is 30% higher than that of traditional solutions. The efficiency at the rated power of the back-to-back system is 95.8%.


2021 ◽  
Vol 11 (24) ◽  
pp. 12143
Author(s):  
Jiaqi Wu ◽  
Xiaodong Li ◽  
Sheng-Zhi Zhou ◽  
Song Hu ◽  
Hao Chen

To meet the requirements of charging the mainstream rechargeable batteries, in this work, a dual-bridge resonant converter (DBRC) is operated as a battery charger. Thanks to the features of this topology, the required high efficiency can be achieved with a wide range of battery voltage and current by using different modulation variables. Firstly, a typical charging process including constant-voltage stage and constant-current stage is indicated. Then, two different modulation methods of the DBRC are proposed, both of which can realize constant-voltage charging and constant-current charging. Method I adopts phase-shift modulation with constant switching frequency while Method II adopts varying frequency modulation. Furthermore, as guidance for practical application, the design principles and detailed design procedures of the DBRC are customized for the two modulation methods respectively in order to reduce the switching loss and conduction loss. Consequently, the full soft-switching operation with low rms tank current is achieved under the two modulation methods, which contributes to the high efficiency of the whole charging process. At last extensive simulation and experimental tests on a lab prototype converter are performed, which prove the feasibility and effectiveness of the proposed modulation strategies.


Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
Nik Rumzi Nik Idris ◽  
Tole Sutikno ◽  
Yonis.M.Yonis Buswig

This paper presents a phase shifted series resonant converter with step up high frequency transformer to achieve the functions of high output voltage, high power density and wide range of Zero Voltage Switching (ZVS). In this approach, the output voltage is controlled by varying the switching frequency. The controller has been designed to achieve a good stability under different load conditions. The converter will react to the load variation by varying its switching frequency to satisfy the output voltage requirements. Therefore in order to maintain constant output voltage, for light load (50% of the load), the switching frequency will be decreased to meet the desired output, while for the full load (100%) conditions, the switching frequency will be increased. Since the controlled switching frequency is limited by the range between the higher and lower resonant frequencies , the switches can be turned on under ZVS. In this study, a laboratory experiment has been conducted to verify the effectiveness of the system performance.


2014 ◽  
Vol 635-637 ◽  
pp. 1155-1158
Author(s):  
Chao Ye ◽  
Ting You Wang ◽  
Ye Yuan

This paper presents a small ARM-based frequency control system, the voltage 220V/50Hz mains, rectified, filtered into DC, then reverse into adjustable frequency alternating current supplied to the motor used. Through software algorithms SPWM control signal generated by the microcontroller, the control signal sent through the intelligent power module, the realization of the DC inverter process. The design is simple, functional and meet the current frequency control system, modular, digital trends, has a waveform, small size, high efficiency, frequency wide range of features. Has good practical value and low cost.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1569 ◽  
Author(s):  
Sajib Chakraborty ◽  
Hai-Nam Vu ◽  
Mohammed Mahedi Hasan ◽  
Dai-Duong Tran ◽  
Mohamed El Baghdadi ◽  
...  

This article reviews the design and evaluation of different DC-DC converter topologies for Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs). The design and evaluation of these converter topologies are presented, analyzed and compared in terms of output power, component count, switching frequency, electromagnetic interference (EMI), losses, effectiveness, reliability and cost. This paper also evaluates the architecture, merits and demerits of converter topologies (AC-DC and DC-DC) for Fast Charging Stations (FCHARs). On the basis of this analysis, it has found that the Multidevice Interleaved DC-DC Bidirectional Converter (MDIBC) is the most suitable topology for high-power BEVs and PHEVs (> 10kW), thanks to its low input current ripples, low output voltage ripples, low electromagnetic interference, bidirectionality, high efficiency and high reliability. In contrast, for low-power electric vehicles (<10 kW), it is tough to recommend a single candidate that is the best in all possible aspects. However, the Sinusoidal Amplitude Converter, the Z-Source DC-DC converter and the boost DC-DC converter with resonant circuit are more suitable for low-power BEVs and PHEVs because of their soft switching, noise-free operation, low switching loss and high efficiency. Finally, this paper explores the opportunity of using wide band gap semiconductors (WBGSs) in DC-DC converters for BEVs, PHEVs and converters for FCHARs. Specifically, the future roadmap of research for WBGSs, modeling of emerging topologies and design techniques of the control system for BEV and PHEV powertrains are also presented in detail, which will certainly help researchers and solution engineers of automotive industries to select the suitable converter topology to achieve the growth of projected power density.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1234 ◽  
Author(s):  
Yoon-Geol Choi ◽  
Hyeon-Seok Lee ◽  
Bongkoo Kang ◽  
Su-Chang Lee ◽  
Sang-Jin Yoon

This paper proposes a grid-connected single-stage micro-inverter with low cost, small size, and high efficiency to drive a 320 W class photovoltaic panel. This micro-inverter has a new and advanced topology that consists of an interleaved boost converter, a full-bridge converter, and a voltage doubler. Variable switching frequency and advanced burst control schemes were devised and implemented. A 320 W prototype micro-inverter was very compact and slim with 60-mm width, 310-mm length, and 30-mm height. In evaluations, the proposed micro-inverter achieved CEC weighted efficiency of 95.55%, MPPT efficiency >95% over the entire load range, and THD 2.65% at the rated power. The proposed micro-inverter is well suited for photovoltaic micro-inverter applications that require low cost, small size, high efficiency, and low noise.


Sign in / Sign up

Export Citation Format

Share Document