scholarly journals Mathematical Modeling of an Electrotechnical Complex of a Power Unit Based on Hydrogen Fuel Cells for Unmanned Aerial Vehicles

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6974
Author(s):  
Ivan V. Vasyukov ◽  
Alexander V. Pavlenko ◽  
Vladimir S. Puzin ◽  
Denis V. Batishchev ◽  
Irina A. Bolshenko

The issues of mathematical and numerical simulation of an electrical complex of a power plant based on hydrogen fuel cells with a voltage step-down converter were considered. The work was aimed at developing a mathematical model that would provide for determining the most loaded operation mode of the complex components. The existing mathematical models do not consider the effect of such processes as the charge and discharge of the battery backup power supply on the power plant components. They often do not consider the nonlinearity of the fuel cell output voltage. This paper offers a mathematical model of an electrical complex based on the circuit analysis. The model combines a well-known physical model of a fuel cell based on a potential difference and a model of a step-down converter with a battery backup power supply developed by the authors. A method of configuring a fuel cell model based on the experimental current–voltage characteristic by the least-squares method has been proposed. The developed model provides for determining currents and voltages in all components of the power plant both in the nominal operating mode and in the mode of limiting the power consumed from the fuel cell when the battery backup power supply is being charged. The correctness of the calculated ratios and the mathematical model has been confirmed experimentally. Using the proposed model, a 1300 W power plant with a specific power of 529.3 W∙h/kg was developed and tested.

2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Wanyi Ng ◽  
Mrinalgouda Patil ◽  
Anubhav Datta

The objective of this paper is to study the impact of combining hydrogen fuel cells with lithium-ion batteries through an ideal power-sharing architecture to mitigate the poor range and endurance of battery powered electric vertical takeoff and landing (eVTOL) aircraft. The benefits of combining the two sources is first illustrated by a conceptual sizing of an electric tiltrotor for an urban air taxi mission of 75 mi cruise and 5 min hover. It is shown that an aircraft of 5000–6000 lb gross weight can carry a practical payload of 500 lb (two to three seats) with present levels of battery specific energy (150 Wh/kg) if only a battery–fuel cell hybrid power plant is used, combined in an ideal power-sharing manner, as long as high burst C-rate batteries are available (4–10 C). A power plant using batteries alone can carry less than half the payload; use of fuel cells alone cannot lift off the ground. Next, the operation of such a system is demonstrated using systematic hardware testing. The concepts of unregulated and regulated power-sharing architectures are described. A regulated architecture that can implement ideal power sharing is built up in a step-by-step manner. It is found only two switches and three DC-to-DC converters are necessary, and if placed appropriately, are sufficient to achieve the desired power flow. Finally, a simple power system model is developed, validated with test data and used to gain fundamental understanding of power sharing.


2017 ◽  
Vol 4 ◽  
pp. 76-86 ◽  
Author(s):  
Reece Cohen Woodley ◽  
Kane Yang ◽  
Geoffrey Bruce Tanner ◽  
Dennis Tran

This meta-study focuses on the research regarding the use of nanotechnology in traditional fuel cells in order to increase thermodynamic efficiency through the exploitation of various thermodynamic systems and theories. The use of nanofilters and nano-structured catalysts improve the fuel cell system through the means of filtering molecules from protons and electrons significantly increases the possible output of the fuel cell and the use of nano-platinum catalysts to lower the activation energy of the fuel cell chemical reaction a notable amount resulting in a more efficient system and smaller entropy in comparison to the use of macro sized catalysts.


Author(s):  
Aleksandrs Andreičiks ◽  
Kristaps Vitols ◽  
Oskars Krievs ◽  
Ingars Steiks

Current Fed Step-up DC/DC Converter for Fuel Cell Inverter ApplicationsIn order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.


Author(s):  
Ronald M. Dell ◽  
Patrick T. Moseley ◽  
David A.J. Rand

2021 ◽  
Vol 13 (16) ◽  
pp. 9355
Author(s):  
Aleksandr Kulikov ◽  
Aleksey Loskutov ◽  
Andrey Kurkin ◽  
Andrey Dar’enkov ◽  
Andrey Kozelkov ◽  
...  

At the present stage of electric power industry development, special attention is being paid to the development and research of new efficient energy sources. The use of hydrogen fuel cells is promising for remote autonomous power supply systems. The authors of the paper have developed the structure and determined the optimal composition of a hybrid generation system based on hydrogen fuel cells and battery storage and have conducted studies of its operating modes and for remote consumers’ power supply efficiency. A simulation of the electromagnetic processes was carried out to check the operability of the proposed hybrid generation system structure. The simulation results confirmed the operability of the structure under consideration, the calculation of its parameters reliability and the high quality of the output voltage. The electricity cost of a hybrid generation system was estimated according to the LCOE (levelized cost of energy) indicator, its value being 1.17 USD/kWh. The factors influencing the electricity cost of a hydrogen generation system have been determined and ways for reducing its cost identified.


2014 ◽  
Vol 1006-1007 ◽  
pp. 1199-1202
Author(s):  
Yuan Ren ◽  
Zhi Dan Zhong ◽  
Zhi Wen Zhang

Current development in fuel cells and hydrogen fuel cells vehicles are first described in the paper, and then the paper gives up-to-date review of hydrogen fuel cell vehicle technological status and hydrogen infrastructure. Then the paper analysis barriers in hydrogen fuel cell vehicle commercialization and the cost reduction challenges especially in the material for catalyst and operational condition. Then in the end this paper gives the hydrogen fuel cell vehicles prospects and outlook.


RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3649-3656 ◽  
Author(s):  
Lang Xu ◽  
Fraser A. Armstrong

The festive Hydrogen House, powered by a hydrogen–air mixture using an enzyme fuel cell.


Sign in / Sign up

Export Citation Format

Share Document