scholarly journals Travel Dynamics Analysis and Intelligent Path Rectification Planning of a Roadheader on a Roadway

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7201
Author(s):  
Xiaodong Ji ◽  
Minjun Zhang ◽  
Yuanyuan Qu ◽  
Hai Jiang ◽  
Miao Wu

The tunneling work belongs to the group operation of semi-closed space, and the work is difficult with a high risk coefficient. It is an urgent requirement of coal mining to achieve unmanned and intelligent tunneling work. The path rectification planning of roadheaders is a necessary step before roadway cutting. In the traditional dynamic modeling analysis of roadhead tracks, problems such as compaction resistance, bulldozing resistance, steering resistance, tunnel dip angle, ditching, and obstacle-crossing capacity are not considered. In order to approximate the kinematic and dynamic parameters of a roadheader’s deviation correction under actual working conditions, this paper establishes kinematic and dynamic models of a roadheader’s path rectification at low speeds and under complex working conditions, and calculates the obstacle-crossing ability of roadheaders in the course of path rectification by modes based on roadway conditions, crawler resistance, and driving performance of the roadheader. Field experiments were carried out to verify the effectiveness of the dynamic model. The dynamic roadheader model was used in combination with actual working conditions of roadways in order to establish a roadway grid model. The grid model was simplified using rectifying influence degree and distance cost. The roadheader dynamic model and grid model were then used to propose a path rectification planning and tracking algorithm based on particle swarm optimization of the actual roadway conditions and roadheader driving performance. Finally, the effectiveness and superiority of the algorithm were verified using MATLAB simulation. The algorithm can provide strong technical guarantee for the intelligence of roadheader and unmanned mining. The results presented here can provide theoretical and technical support for the structural optimization and intelligent travel control of roadheaders.

10.30544/716 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 449-456
Author(s):  
Tomislav D Bradarić ◽  
Z. M. Slović ◽  
G. J. Stepanoski ◽  
S. Kosanović

This paper describes the computer model for BOF control that was in use at Smederevo, Serbia, during the period 1994-2006. The model was developed at the Institute of Metallurgy of the Smederevo Steelwork in mid-1994 and was motivated by the fact that the plant in Smederevo, by that time, had many years of experience in endpoint control using Intermediate Stop Practice (ISP). The vision for the model was to continuously improve and adapt to the working conditions of production through self-learning and adjustments. The model belongs to the well-known family of Static-Dynamic models (SDMs). It is aimed to reduce the "oxygen off-to-start tap" time and thus increase productivity and reduce production costs. The paper briefly describes the metallurgical software, operator operations and provides some information on the model's effectiveness.


2012 ◽  
Vol 619 ◽  
pp. 160-163
Author(s):  
Xiao Hua Wei ◽  
Miao Xie

The cutting system of the longitudinal roadheader is simplified to get the physical model. And the dynamic model is obtained on the basis of that. Then the simulating model is established by using Matlab/Simulink. Furthermore, the relative technical variants are analyzed and determined. Computer analysis is performed by setting some parameters which conform to the actual working conditions.


Author(s):  
A. T. Marufiy ◽  
A. S. Kalykov

In this article, an analytical solution is obtained for the problem of bending a semi-infinite plate on an elastic Winkler base, taking into account incomplete contact with the base and the influence of longitudinal forces applied in the middle plane of the plate. The analytical solution is obtained by the method of generalized solutions using integral Fourier transforms. Any analytical solution is the result, approaching the actual working conditions of the designed structures.


1976 ◽  
Vol 98 (2) ◽  
pp. 614-619 ◽  
Author(s):  
F. A. Burney ◽  
S. M. Pandit ◽  
S. M. Wu

The machine tool dynamics is evaluated under actual working conditions by using a time series technique. This technique develops mathematical models from only one signal, viz., the relative displacement between the cutter and the workpiece. Analysis of the experimental data collected on a vertical milling machine indicates that the new methodology is capable of characterizing the machine tool structure and the cutting process dynamics separately. Furthermore, it can also detect and quantify the interaction between these two subsystems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


Author(s):  
Mortadha Graa ◽  
Mohamed Nejlaoui ◽  
Ajmi Houidi ◽  
Zouhaier Affi ◽  
Lotfi Romdhane

In this paper, an analytical reduced dynamic model of a rail vehicle system is developed. This model considers only 38 degrees of freedom of the rail vehicle system. This reduced model can predict the dynamic behaviour of the rail vehicle while being simpler than existing dynamic models. The developed model is validated using experimental results found in the bibliography and its results are compared with existing more complex models from the literature. The developed model is used for the passenger comfort evaluation, which is based on the value of the weighted root mean square acceleration according to the ISO 2631 standard. Several parameters of the system, i.e., passenger position, loading of the railway vehicle and its speed, and their effect on the passenger comfort are investigated. It was shown that the level of comfort is mostly affected by the speed of the railway vehicle and the position of the seat. The load, however, did not have a significant effect on the level of comfort of the passenger.


Author(s):  
Jordi Casas

Traditionally traffic demand models require as input the impedance of a demand with respect to the network supply; mode choice or departure choice for example, take into account the travel time for each option. Bearing this in mind, the main criticism of using static models to evaluate travel times is that the estimated travel time could diverge considerably because these models have no capacity constraints. On the other hand, dynamic models, such as mesoscopic models, have a level of detail that is sometimes unnecessarily high for the final requirements. The Quasi-dynamic model developed in Aimsun could contribute to a more realistic estimate of the travel time while avoiding the need for a full dynamic model. This paper presents the integration of a Quasi-dynamic model inside the integrated framework of Aimsun and evaluates a comparison of all models in terms of travel time estimation. The evaluation is performed using real networks validated with real data sets.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4127


2021 ◽  
Vol 15 ◽  
Author(s):  
Lijia Liu ◽  
Joseph L. Cooper ◽  
Dana H. Ballard

Improvements in quantitative measurements of human physical activity are proving extraordinarily useful for studying the underlying musculoskeletal system. Dynamic models of human movement support clinical efforts to analyze, rehabilitate injuries. They are also used in biomechanics to understand and diagnose motor pathologies, find new motor strategies that decrease the risk of injury, and predict potential problems from a particular procedure. In addition, they provide valuable constraints for understanding neural circuits. This paper describes a physics-based movement analysis method for analyzing and simulating bipedal humanoid movements. The model includes the major body segments and joints to report human movements' energetic components. Its 48 degrees of freedom strike a balance between very detailed models that include muscle models and straightforward two-dimensional models. It has sufficient accuracy to analyze and synthesize movements captured in real-time interactive applications, such as psychophysics experiments using virtual reality or human-in-the-loop teleoperation of a simulated robotic system. The dynamic model is fast and robust while still providing results sufficiently accurate to be used to animate a humanoid character. It can also estimate internal joint forces used during a movement to create effort-contingent stimuli and support controlled experiments to measure the dynamics generating human behaviors systematically. The paper describes the innovative features that allow the model to integrate its dynamic equations accurately and illustrates its performance and accuracy with demonstrations. The model has a two-foot stance ability, capable of generating results comparable with an experiment done with subjects, and illustrates the uncontrolled manifold concept. Additionally, the model's facility to capture large energetic databases opens new possibilities for theorizing as to human movement function. The model is freely available.


Aviation ◽  
2004 ◽  
Vol 8 (4) ◽  
pp. 10-15
Author(s):  
Edgars K. Vasermanis ◽  
Nicholas A. Nechval ◽  
Konstantin N. Nechval ◽  
Kristine N. Rozite

Airline seat inventory control is about “selling the right seats to the right people at the right time”. In this paper, the problem of determining optimal booking policy for multiple fare classes in a pool of identical seats for multi‐leg flights is considered. During the time prior to departure of a multi‐leg flight, decisions must be made concerning the allocation of reserved seats to passengers requesting space on the full or partial spans of the flight. It will be noted that in the case of multi‐leg flights the long‐haul passengers are often unable to obtain seats because the shorter‐haul passengers block them. For large commercial airlines, efficiently setting and updating seat allocation targets for each passenger category on each multi‐leg flight is an extremely difficult problem. This paper presents static and dynamic models of airline seat inventory control for multi‐leg flights with multiple fare classes, which allow one to maximize the expected contribution to profit. The dynamic model uses the most recent demand and capacity information and allows one to allocate seats dynamically and anticipatorily over time.


Sign in / Sign up

Export Citation Format

Share Document