scholarly journals Characteristics of Waste Generated in Dimension Stone Processing

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7232
Author(s):  
Paweł Strzałkowski

Natural dimension stone processing generates large volumes of stone waste, which have a significant impact on the environment, as well as on the efficiency and profitability of the stone-processing plant. The article presents the characteristics of waste produced as a result of natural dimension stone processing and the structure of the waste production process. Solid stone scraps and sludge were distinguished. On the basis of the performed analyses, it was shown that stone waste constitutes 10–35% in relation to the quantity of the processed stone material, with the quantity of sludge being even threefold greater than the volume of solid scraps. According to the circular economy principles, the aim should be to reduce the amount of waste generated by reducing primary resources in favour of secondary material. Reducing the volume of stone waste is possible through rational planning of stone production while at the same time maximising the efficiency of stone material usage and introducing the most modern processing machines. This significant volume of stone waste encourages efforts to find solutions for both its management and reduction. This paper reviews the utility potential of stone waste. Sensible use of waste is important to increase the profitability and productivity of processing plants while incentivising environmental protection.

2006 ◽  
Vol 69 (2) ◽  
pp. 299-307 ◽  
Author(s):  
C. VanWORTH ◽  
B. A. McCREA ◽  
K. H. TONOOKA ◽  
C. L. BOGGS ◽  
J. S. SCHRADER

PCR–restriction fragment length polymorphism of the flagellin (flaA) gene in Campylobacter jejuni was used to determine the relationships of isolates collected at the farm and throughout processing for six niche-market poultry species. This study focused on two specialty chicken products, poussin and free range, and four other specialty products, squab, duck, guinea fowl, and quail. Cloacal and carcass samples were collected from three flocks from each of the six niche species. Three processing plants in California participated in a 2-year investigation. A total of 773 isolates from farm, posttransport, and the processing plants were genotyped, yielding a total of 72 distinct flaA profiles for the six commodities. Genetic diversity of C. jejuni at the farm was greatest for ducks with up to 12 distinct flaA types in two flocks and least for squab 1 flaA type between two farms. For two of the guinea fowl flocks, one free-range flock, two squab flocks, and all three poussin flocks, the flaA types recovered at the prepackage station matched those from the farm. Cross-contamination of poultry carcasses was supported by the observation of flaA types during processing that were not present at the farm level. New C. jejuni strains were detected after transport in ducks, guinea fowl, and free-range chickens. Postpicker, postevisceration, and prewash sampling points in the processing plant yield novel isolates. Duck and free-range chickens were the only species for which strains recovered within the processing plant were also found on the final product. Isolates recovered from squab had 56 to 93% similarity based on the flaA types defined by PCR–restriction fragment length polymorphism profiles. The 26 duck isolates had genetic similarities that ranged from 20 to 90%. Guinea fowl and free-range chickens each had 40 to 65% similarity between isolates. Poussin isolates were 33 to 55% similar to each other, and quail isolates were 46 to 100% similar. Our results continue to emphasize the need to clean processing equipment and posttransport crates in order to decrease cross contamination between flocks. This study also determined that several strains of C. jejuni had unique flaA types that could only be recovered in their host species.


2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


2007 ◽  
Vol 70 (10) ◽  
pp. 2354-2364 ◽  
Author(s):  
JASON R. HUCK ◽  
NICOLE H. WOODCOCK ◽  
ROBERT D. RALYEA ◽  
KATHRYN J. BOOR

Psychrotolerant endospore-forming bacteria Bacillus and Paenibacillus spp. are important spoilage organisms in fluid milk. A recently developed rpoB subtyping method was applied to characterize the diversity and phylogenetic relationships among Bacillus and related sporeformers associated with milk processing systems. Milk samples representing the processing continuum from raw milk to pasteurized products were collected from two fluid milk processing plants, held at 6°C uptothe code date that had been established by each processing plant (i.e., either 18 or 21 days), and plated for bacterial enumeration throughout storage. Bacterial colonies selected to represent the visible diversity in colony morphology on enumeration plates were examined further. Among 385 bacterial isolates characterized, 35% were Bacillus spp., and 65% were Paenibacillus spp. A total of 92 rpoB allelic types were identified among these isolates, indicating considerable diversity among endospore-forming spoilage organisms present in fluid milk systems. Of the 92 allelic types identified, 19 were isolated from samples collected from both processing plants. The same rpoB allelic types were frequently identified in paired raw milk and packaged product samples, indicating that Bacillus and Paenibacillus spp. can enter dairy processing systems through raw milk. Certain subtypes were found exclusively in pasteurized samples, including those that were temporally independent, suggesting the possibility of in-plant sources for these spoilage organisms, including through the persistence of selected subtypes in processing plants. Development of effective control strategies for the diverse array of psychrotolerant endospore-forming organisms that currently limit the shelf lives of high-temperature short-time fluid milk products will require comprehensive, integrated efforts along the entire milk processing continuum.


2021 ◽  
Vol 15 ◽  
pp. 117863022110610
Author(s):  
Wubalem Genanaw ◽  
Girum Gebremeskel Kanno ◽  
Dawit Derese ◽  
Mekonnen Birhanie Aregu

In Ethiopia, most of the coffee processing plants are generating large amounts of wastewater with high pollutant concentrations and discharge directly into the water bodies untreated or partially treated. The main objective of this study was to assess the effects of coffee wastewater discharged to river water quality using physicochemical parameters and macro-invertebrate indices. This study was conducted from November to the end of December 2019. Ten wastewater and river water samples were taken from coffee the processing plant and river. The macro-invertebrate samples were collected by kick sampling technique using a standard hand net. Shannon and Simpson diversity indices were examined at 3 sampling stations. The Pielou evenness index was also determined. It was found that except for TDS all the parameters of the raw wastewater and river water did not comply with the international discharge limit. The mean concentration of Faro coffee processing plant wastewater were BOD5 (2409.6 ± 173.1 mg/L), COD (4302 ± 437 mg/L), TSS (2824.6 ± 428.4 mg/L), TDS (3226 ± 623.6 mg/L), and TS (4183.3 ± 432.9 mg/L). Whereas from Bokaso coffee processing plant were BOD5 (3770 ± 604.4 mg/L), COD (4082.6 ± 921.9 mg/L), TSS (2766 ± 501.7 mg/L), TDS (3017 ± 747.6 mg/L), and TS (3874 ± 471.1 mg/L). A total of 392 macroinvertebrates belonging to 24 families and 7 orders were collected. The benthos assemblage communities in this river were 40, 56, and 296 at downstream 1, downstream 2, and upstream respectively. The value of the Simpson diversity index varies from 0.4 to 0.75. In the same manner, the value of the Shannon diversity index also varied from 0.5 to 1.36. Most of the physicochemical parameters of the raw wastewater were beyond the national and international discharge limits. The quality of Orsha river water downstream was more adversely affected compared to upstream.


2020 ◽  
Vol 21 (2) ◽  
pp. 531-544
Author(s):  
Jelena Stankevičienė ◽  
Marta Nikanorova

Circular economy (CE) is based on environmental, economic and social dimensions which aim to ensure sustainable development on each step of product creation, transformation and conversion by creating a closed-loop economy. The purpose of the article is to propose a concept of measurement the development of eco-innovations in the context of circular economy, apply and provide empirical evidence based on the data of Baltic Sea Region countries. The study augmented for the models that include the analysis of the circular economy concept, the importance of eco-innovation in the context of circular economy including the accent on recycling, circular material usage, material efficiency and waste management. The multi-criteria decision methods MULTIMOORA and TOPSIS were used to assess the eco-innovation as a pillar of circular economy. Results are useful to add to theoretical building and also evaluate the socio-economic aspect in the concept of circular economy.


2021 ◽  
pp. 44-52
Author(s):  
V. F. Baranov

The article describes the largest operating processing plants for lowgrade copper sulphide ores of our time: 10 plants using the semi-autogenous grinding (SAG) technology and 10 plants using high-pressure grinding rolls (HPGR), with the output of 18 to 100 Mtpa. The unfavorable natural and economic factors are balanced by improved ore preparation and concentration technologies and high-capacity equipment units, combined with cost-saving layout solutions. The ore preparation sector is currently divided between the competing technologies of semi-autogenous grinding and HPGR. The article contains an overview of their advantages and disadvantages. The world’s largest monosection with the capacity of 55.5 Mtpa, that uses the SAG technology, is described. The role of the Drop Weght Test JKSimMet (A×b) parameter in the selection of the ore preparation method and the trend for using HPGR in the processing of strong ores are shown. Examples are provided for the consequences of an inadequate assessment of the feed strength in SAG-based plant designs. Examples of ore preparation process intensification through the use of HPGR in semi-autogenous grinding circuits are also given. The volume of impeller flotation cells installed has reached 600 m3. An overview of the two largest processing plants of our time with the output of 88 and 100 Mtpa of ore is presented. The innovative technical solutions of a newest low-capacity copper plant are highlighted. Based on the results of the overview, a future processing plant is predicted to use ∅12.8–13 m SAG mills, HPGRs with the roll diameter of 3 m, vertical VTM-7000 mills in ore grinding cycles, large fine screens, large-scale impeller flotation cells, and staged SFR and DFR flotation reactors.


2021 ◽  
Author(s):  
◽  
Caitlin Bruce

<p>New Zealand is ranked among the top nations in waste production, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic within New Zealand but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models. The plastic was recycled into filament for additive manufacturing (AM) and used to print building tile, establishing an initial proof of concept for the use of recycled plastic as a potential building material.</p>


2021 ◽  
Vol 334 ◽  
pp. 02034
Author(s):  
Alla Semykina ◽  
Nikolay Zagorodniy ◽  
Yuliya Fomenko ◽  
Alexey Konev

The article considers problems of a transport complex of mining and processing plants. Requirements for quarry transport are presented. The production process and technological operations of the transportation process are considered. The ways of solving the problems of the transportation process are determined. It is established that when creating a rational system for transporting iron ore raw materials, it is possible to reduce material costs and losses during transportation.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 549 ◽  
Author(s):  
Valentine Chanturiya ◽  
Vladimir Minenko ◽  
Dmitriy Makarov ◽  
Olga Suvorova ◽  
Ekaterina Selivanova

Methods of cleaning and processing of saponite-containing water from diamond processing plants in the Arkhangelsk region, Russia, are discussed. The advantages of electrochemical separation of saponite from process water enabling to change its structural-texture, physico-chemical and mechanical properties are demonstrated. Possible areas of saponite and modified-saponite products application are considered.


Sign in / Sign up

Export Citation Format

Share Document