scholarly journals Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7996
Author(s):  
Anatoliy M. Pavlenko ◽  
Hanna Koshlak

In this paper, the authors consider the processes of dynamic interaction between the boiling particles of the dispersed phase of the emulsion leading to the large droplet breakup. Differences in the consideration of forces that determine the breaking of non-boiling and boiling droplets have been indicated in the study. They have been determined by the possibility of using the model to define the processes of displacement, deformation, or fragmentation of the inclusion of the dispersed phase under the influence of a set of neighboring particles. The dynamics of bubbles in a compressible liquid with consideration for interfacial heat and mass transfer has also been analyzed in the paper. The effect of standard and system parameters on the intensity of cavitation processes is considered. Physical transformations during the cavitation treatment of liquid are caused not only by shock waves and radiated pressure pulses but also by extreme thermal effects. At the stage of ultimate bubble compression, vapor inside the bubble and the liquid in its vicinity transform into the supercritical fluid state. The model analyzes microflow features in the inter-bubble space and quantitatively calculates local values of the velocity and pressure fields, as well as dynamic effects.

2012 ◽  
Vol 9 (1) ◽  
pp. 91-93
Author(s):  
U.R. Ilyasov ◽  
A.V. Dolgushev

The problem of volumetric thermal action on a moist porous medium is considered. Numerical solution, the influence of fluid mobility on the dynamics of the heat and mass transfer process is analyzed. It is established that fluid mobility leads to a softer drying regime. It is shown that in low-permeability media, the fluid can be assumed to be stationary.


Author(s):  
Guodong Wang ◽  
Zhe Wang

The AP1000 containment model has been developed by using WGOTHIC version 4.2 code. Condensation heat and mass transfer from the volumes to the containment shell, conduction through the shell, and evaporation from the shell to the riser were all calculated by using the special CLIMEs model. In this paper, the latest GOTHIC version 8.0 code is used to model both condensation and evaporation heat and mass transfer process. An improved heat and mass transfer model, the diffusion layer model (DLM), is adopted to model the condensation on the inside wall of containment. The Film heat transfer coefficient option is used to model the evaporation on the outside wall of containment. As a preliminary code consolidation effort, it is possible to use GOTHIC 8.0 code as a tool to analysis the AP1000 containment response.


2017 ◽  
Vol 129 ◽  
pp. 06010 ◽  
Author(s):  
Oksana S. Dmitrieva ◽  
Andrey V. Dmitriev ◽  
Ilnur N. Madyshev ◽  
Leonid V. Kruglov

2018 ◽  
Vol 240 ◽  
pp. 02006 ◽  
Author(s):  
Valery Gorobets ◽  
Yurii Bohdan ◽  
Viktor Trokhaniak ◽  
Ievgen Antypov

Shall-and-tube heat exchangers based on the bundles with in-line or staggered arrangements have been widely used in industry and power engineering. A large number of theoretical and experimental works are devoted to study of hydrodynamic and heat transfer processes in such bundles. In that, works the basic studies of heat and mass transfer for these bundles are found. However, heat exchangers of this type can have big dimensions and mass. One of the ways to improve the weight and dimensions of the shell-and-tube heat exchangers is to use compact arrangement of tube bundles. A new design of heat exchanger is proposed, in which there are no gaps between adjacent tubes that touch each other. Different geometry of these tube bundles with displacement of adjacent tubes in the direction of transverse to the flow is considered. Numerical modelling and experimental investigations of hydrodynamic, heat and mass transfer processes in such tube bundles has been carried out. The distribution of velocities, temperatures, and pressure in inter-tube channels have been obtained.


Author(s):  
Ananda Krishna Nagavarapu ◽  
Srinivas Garimella

This paper presents the development of a miniaturization technology for heat and mass exchangers used in absorption heat pumps. The exchanger consists of an array of parallel, aligned alternating shims with integral microscale features, enclosed between cover plates. These microscale features facilitate the flow of the various fluid streams and the associated heat and mass transfer. In an absorber application, effective vapor and solution contact and microscale features for the flow of both the solution and the coolant induce high heat and mass transfer rates without any active or passive surface enhancement. The geometry ensures even flow distribution with minimal overall pressure drops. A model of the coupled heat and mass transfer process for ammonia-water absorbers using this configuration under typical operating conditions demonstrates the potential for extremely small absorption components. The proposed concept is compact, modular, versatile, and in an eventual implementation, can be mass produced. Additionally, the same concept can be extended to the other absorption heat pump components as well as for several other industries involved in multicomponent fluid processes.


2004 ◽  
Vol 59 (14) ◽  
pp. 2921-2928 ◽  
Author(s):  
Hongwei Wu ◽  
Zhi Tao ◽  
Guohua Chen ◽  
Hongwu Deng ◽  
Guoqiang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document