scholarly journals Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8101
Author(s):  
Piotr Bielaczyc ◽  
Wojciech Honkisz ◽  
Joseph Woodburn ◽  
Andrzej Szczotka ◽  
Fabrizio Forloni ◽  
...  

The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, and most importantly there are no published studies comparing the results of different laboratories applying the new cycle. In this study we compared the particle and gaseous pollutants of one Euro 4 motorcycle measured in two laboratories in 2017 and 2020. The gaseous pollutant results had a variance (one standard deviation of the means) of 0.5% for CO2, 4–19% for CO, NOx, HC (hydrocarbons) and SPN (Solid Particle Number). The particulate matter mass results had higher variance of 50–60%. Additional tests with open configuration to mimic dilution at the tailpipe gave equivalent results to the closed configuration for the gaseous pollutants and SPN. The total particles (including volatiles) had significant differences between the two configurations, with the closed configuration giving higher results. The main conclusion of this study is that the new procedures have very good reproducibility, even for the SPN that is not regulated for L-category vehicles. However, the measurement of total particles needs attention due to the high sensitivity of volatile particles to the sampling conditions.

2021 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Anastasios Melas

The Euro 5 limits for L-category vehicles are applicable since 2020 and for this reason there is lack of studies examining the emissions of this category. In this study we tested a 1000 cm3 Euro 5 motorcycle over the World Harmonised Motorcycle Test Cycle (WMTC). The gaseous pollutants were approximately half of their respective limits. The cold start (first 2 minutes) contributed to the majority of the emissions. The solid particle number emissions were also 6.5 times below the limit for passenger cars, but the particles not counted with the current methodology were around 2 times higher. High concentrations of volatiles were emitted at the high speed part of the cycle.


2021 ◽  
Vol 268 ◽  
pp. 01052
Author(s):  
Guangyao Wang ◽  
Hongyu Qin ◽  
Deyu Meng ◽  
Ziye Wang

Basing on the experimental study of fuel consumbtion in World-wide Harmonized Light-duty Test Cycle (WLTC ), this paper conducted the effects of using different immersion temperature on the fuel consumption of a light-duty gasoline vehicle. The study mainly studied the first phase of WLTC with three gaseous pollutant emissions: carbon dioxide, carbon monoxide and unburned hydrocarbon(CO2, CO and HC )which is measured to caculate the fuel consumption of Light-duty Gasoline Vehicles. It appears that with the increase of time the working condition of the vehicle tends to be stable resulting in the similar emission of the gaseous pollutant in the different test. Which means the immersion temperature mainly effects gaseous pollutant emissions in low-speed phase in WLTC. Besides, the cold start of engine had generated a large quantity of carbon monoxide and unburned hydrocarbon, but it is different for the carbon dioxide which was generated continuously in the first whole phase. The study also found that the use of a higher immersion temperatures (26℃) is more favorable than a lower immersion temperatures (23℃) in the typy of testing vehicle’s fuel consumption in the WLTC test cycle.


Author(s):  
Guido Perricone ◽  
Mattia Alemani ◽  
Jens Wahlström ◽  
Ulf Olofsson

Particulate matter emission factors from vehicle brakes are difficult to assess directly from the field. Moreover, there is a lack of a standardized cycle and test stand for evaluating brake emissions. For these reasons, a test cycle was developed from real driving data collected from a car. This new test cycle was implemented on an inertia disc brake dynamometer appositely designed for brake particle emission studies. Results reveal that, for the brake system used as an example, the obtained emission factors for the urban driving conditions studied are comparable to EURO 6 regulations in terms of particle number and comparable to EURO 4 levels in terms of mass with brake emission factors equal to 4.37–6.46 × 1011 particles/km and 44–48 mg/km, respectively.


2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


2007 ◽  
Vol 7 (5) ◽  
pp. 15105-15154 ◽  
Author(s):  
A. Petzold ◽  
J. Hasselbach ◽  
P. Lauer ◽  
R. Baumann ◽  
K. Franke ◽  
...  

Abstract. Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&amp;}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)−1 by number for non-volatile particles and 174±43 mg (kg fuel)−1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.


Author(s):  
I. Gulyurtlu ◽  
T. Crujeira ◽  
P. Abelha ◽  
D. Boavida ◽  
J. Seabra ◽  
...  

The combustion behaviour of municipal solid waste was studied in a pilot fluidised bed combustor. The waste was pelletised prior to its use. Both co-firing with coal and combustion of waste alone were under taken. The combustion studies were carried out on the pilot installation of INETI. The fluidised bed combustor is square in cross section with each side being 300 mm long. Its height is 5000 mm. There is a second air supply to the freeboard at different heights to deal with high volatile fuels. There was a continuous monitoring of the temperatures in the bed, as well as the composition of the combustion gases. The combustion gases leaving the reactor were let go through the recycling cyclone first to capture most of particulates elutriated out of the combustor. There was a second cyclone which was employed with the aim of increasing the overall efficiency of collecting solid particles. The gaseous pollutants leaving the stack were sampled under iso-kinetic conditions for particulate matter, chlorine compounds and heavy metals. The ash streams were characterised for heavy metals. The results obtained were compared with national legislation. The results obtained suggest that i) the combustion efficiency was very high, ii) there was an enrichment of ashes with heavy metals in the cyclones compared to the bed material, iii) in general, the gaseous pollutants were below the permited limits, and iv) for the compliance with the new European Directive for stricter emission limits adequate control devices, like bag filters, should be integrated with RDF combustion.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Małgorzata Michalska ◽  
Katarzyna Zorena ◽  
Piotr Wąż ◽  
Maria Bartoszewicz ◽  
Agnieszka Brandt-Varma ◽  
...  

The increase in type 1 diabetes mellitus (T1DM) incidence in children is worrying and not yet fully explored. It is suggested that probably air pollution exposure could contribute to the development of T1DM. The aim of the study was to investigate the relationship between the concentration of gaseous pollutants including, nitrogen dioxide (NO2), nitric oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO), and particulate matter (PM) in the air, and the number of new cases of T1DM in children. The number of new cases of T1DM was obtained from the Clinic of Paediatrics, Diabetology, and Endocrinology, Medical University of Gdańsk. The number of children of 0–18 years old in Pomeranian Voivodeship was acquired from the Statistical Yearbook. The concentrations of PM10 absorbance, NO2, NOx, SO2, and CO were measured at 41 measuring posts, between 1 January 2015 and 31 December 2016. It was detected that the average annual concentration of PM10 was higher than the value acceptable to the WHO. Furthermore, the average 24-hour concentration of PM10 was 92 μg/m3 and was higher compared to the acceptable value of 50 μg/m3 (acc. to EU and WHO). Moreover, the number of new cases of T1DM showed a correlation with the annual average concentration of PM10 (β = 2.396, p<0.001), SO2 (β = 2.294, p<0.001), and CO (β = 2.452, p<0.001). High exposure to gaseous pollutants and particulate matter in ambient air may be one of the factors contributing to the risk of developing T1DM in children. Therefore, it is important to take action to decrease air pollutant emissions in Poland. It is crucial to gradually but consistently eliminate the use of solid fuels, such as coal and wood in households, in favour of natural gas and electricity. The development of new technologies to improve air quality, such as “best available techniques” (BAT) or renewable energy sources (water, wind, and solar generation) is of critical importance as well.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Shoujun Liu ◽  
Ju Shangguan ◽  
Song Yang ◽  
Wenguang Du ◽  
Xudong Yan ◽  
...  

Nowadays, the gaseous pollutant emissions, including particulate matter (PM), sulfur dioxide (SO2), and nitrogen oxide (NOx) from household coal combustion, cause great threat to environment and public health by contributing to severe haze in China. Particularly, a clean coke free of the major pollutants precursors (sulfur and nitrogen compounds) by sulfur fixation and denitrification has been deemed as an effective strategy to reducing pollutants. In this paper, a preprocessed coke was prepared by co-pyrolysis of high-sulfur coal with the assistance of calcium-based and iron-based complexes at high temperature. The results show that high-temperature co-pyrolysis could remove the volatile compounds that are major precursors for the formation of gaseous pollutants from the raw coal. During the coking process, the sulfur can be removed by being fixed in the form of CaS in presence of a Ca-based complex, which could be beneficial for the CaSO4 during the coke combustion. The volatile nitrogen is transferred to the gas phase with the addition of Fe-based complexes, which effectively reduce the residual nitrogen in coke. As a result, Ca-based additives captured the released SO2 and formed CaSO4 during the combustion process. In addition, in the presence of Fe-based complexes, both char and CO react with NOx to form N2, which leads to a reduction in NOx emissions during combustion. Additionally, the replacement of current residential coal with a new type of clean coke is a facile method for reducing gaseous pollutant emissions from household activities to protect the atmospheric environment. The average emission factors (EFs) of PM, SO2, and NOx for the prepared clean coke were small during combustion and were much lower than the EFs of the tested raw coal, semicoke, and briquettes.


Sign in / Sign up

Export Citation Format

Share Document