scholarly journals A Method for the Segregation of Emulsion Inner Phase Droplets Using Imbibition Process in Porous Material

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 110
Author(s):  
Mariola M. Błaszczyk ◽  
Łukasz Przybysz

The process of forming an emulsion is an energy-consuming process. The smaller the internal phase droplets we want to produce and the closer the droplets are in size to each other (monodisperse), the more energy we need to put into the system. Generating energy carries a high economic cost, as well as a high environmental footprint. Considering the fact that dispersive systems are widely used in various fields of life, it is necessary to search for other, less-energy-intensive methods that will allow the creation of dispersive systems with adequate performance and minimal energy input. Therefore, an alternative way to obtain emulsions characterized by small droplet sizes was proposed by using an imbibition process in porous materials. By applying this technique, it was possible to obtain average droplet sizes at least half the size of the base emulsion while reducing the polydispersity by about 40%. Oil-in-water emulsions in which vegetable oil or kerosene is the oily phase were tested. The studies were carried out at three different volume concentrations of the emulsions. Detailed analyses of diameter distributions and emulsion concentrations are presented. In addition, the advantages and limitations of the method are presented and the potential for its application is indicated.

2019 ◽  
Vol 25 (14) ◽  
pp. 1616-1622 ◽  
Author(s):  
Gabriela Muniz Félix Araújo ◽  
Gabriela Muniz Félix Araújo ◽  
Alana Rafaela Albuquerque Barros ◽  
Alana Rafaela Albuquerque Barros ◽  
João Augusto Oshiro-Junior ◽  
...  

Leishmaniasis is one of the most neglected diseases in the world. Its most severe clinical form, called visceral, if left untreated, can be fatal. Conventional therapy is based on the use of pentavalent antimonials and includes amphotericin B (AmB) as a second-choice drug. The micellar formulation of AmB, although effective, is associated with acute and chronic toxicity. Commercially-available lipid formulations emerged to overcome such drawbacks, but their high cost limits their widespread use. Drug delivery systems such as nanoemulsions (NE) have proven ability to solubilize hydrophobic compounds, improve absorption and bioavailability, increase efficacy and reduce toxicity of encapsulated drugs. NE become even more attractive because they are inexpensive and easy to prepare. The aim of this work was to incorporate AmB in NE prepared by sonicating a mixture of surfactants, Kolliphor® HS15 (KHS15) and Brij® 52, and an oil, isopropyl myristate. NE exhibited neutral pH, conductivity values consistent with oil in water systems, spherical structures with negative Zeta potential value, monomodal size distribution and average diameter of drug-containing droplets ranging from 33 to 132 nm. AmB did not modify the thermal behavior of the system, likely due to its dispersion in the internal phase. Statistically similar antileishmanial activity of AmB-loaded NE to that of AmB micellar formulation suggests further exploring them in terms of toxicity and effectiveness against amastigotes, with the aim of offering an alternative to treat visceral leishmaniasis.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 358
Author(s):  
Phui Yee Tan ◽  
Beng Ti Tey ◽  
Eng Seng Chan ◽  
Oi Ming Lai ◽  
Hon Weng Chang ◽  
...  

Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59–99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1–9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 631
Author(s):  
Zhang Juyang ◽  
Bettina Wolf

Equal parts of sugar beet pectin and sodium caseinate were interacted through electrostatic attraction, enzymatic crosslinking, and the Maillard reaction to prepare three oil-in-water emulsifier systems. Oil-in-water emulsions (10%) were processed via high shear overhead mixing at the natural pH of the emulsifier systems, followed by pH adjustment to pH 4.5 and pH 7. The emulsions were stable against coalescence, except for a slight increase in the mean droplet size for the enzymatic cross-liked emulsion at pH 4.5 over a 14-day storage period. This emulsion also showed the lowest absolute zeta (ζ)-potential value of near 30 mV. The Maillard interaction emulsifier system resulted in larger droplet sizes compared to the other two emulsifier systems. Small deformation oscillatory shear rheology assessment of the emulsion cream phases revealed an impact of the emulsifier system design at pH 4.5.


2015 ◽  
Vol 3 (20) ◽  
pp. 4118-4122 ◽  
Author(s):  
Bernice H. L. Oh ◽  
Alexander Bismarck ◽  
Mary B. Chan-Park

By varying the oligolysine units of chitosan-graft-oligoNIPAM-graft-oligolysine, high internal phase emulsions of different droplet sizes can be stabilized which can subsequently serve as template for macroporous polymers.


Author(s):  
Junxia Guo ◽  
Gang Lu ◽  
Zili Xie ◽  
Jiawei Wen ◽  
Nanshan Xu

Railway marshalling and transportation is an important component of the production supply chain for large and medium-sized enterprises in China. Traditional inefficient manual-made marshalling plans usually are not optimal in time or energy consuming. An efficient method needs to be developed to find the optimal marshalling plans automatically. This paper mainly studies the railway train automatic marshalling in large and medium-sized enterprises in China. Based on the investigation at the train station of a certain enterprise, according to the railway track information, carriage information, and production task information, this paper designs the abstracted railway state definitions of the station. Then based on the state definitions, the scheduling rules, and the objective function of time cost and economic cost, this paper converts abstract scheduling instructions into a general railway automatic marshalling model which can be executed by computers. By introducing the greedy strategies into different situations to optimize the algorithm of tracks occupation, carriages selection and train path selection in the model, the planning efficiency can be improved while ensuring the economic benefits of the enterprises and the quality of the formation plan. The experimental results show that the proposed model can generate fewer marshalling plans and find the optimal one faster in most cases, which proves the feasibility and availability of the model.


2020 ◽  
Vol 12 (9) ◽  
pp. 11240-11251 ◽  
Author(s):  
Ya Zhu ◽  
Siqi Huan ◽  
Long Bai ◽  
Annika Ketola ◽  
Xuetong Shi ◽  
...  

e-Polymers ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Emine Hilal Mert ◽  
Hüseyin Yıldırım

AbstractPoly(unsaturated polyester-co-glycidyl methacrylate-co-divinylbenzene) poly high internal phase emulsion (HIPE) beads were synthesized via water-in-oil-in-water (w/o/w) multiple emulsions. HIPEs were prepared by using a commercial unsaturated polyester resin (UPR) and a mixture of glycidyl methacrylate (GMA) and divinylbenzene (DVB) as the cross-linker. The external surfactant was found to be a strong influence on the morphology of the beads. The porosity and the pore morphology of the resulting polyHIPE beads were investigated by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) molecular adsorption method, respectively. Post-functionalization of the beads was carried out with multifunctional amines such as 1,4-ethylenediamine (EDA), 1,6-hexamethylenediamine (HMDA) and 4-aminosalicylic acid (ASA). Elemental analysis was used to confirm the functionalization. Resulting functional beads were tested on the adsorption of Ag(I), Cu(II), and Cr(III) under non-competitive conditions and atomic absorption spectroscopy (AAS) was used to calculate the adsorption capacities. The maximum adsorption capacities of the functional beads were found to be decreasing in the order of Ag(I)>Cu(II)>Cr(III).


2016 ◽  
Vol 12 (7) ◽  
pp. 615-624
Author(s):  
Mónica Escobar Blanco ◽  
J. Alberto Quezada Gallo ◽  
K. Shaindel Estrada Arias ◽  
Ruth Pedroza Islas

Abstract Anthocyanin extract (AE) was encapsulated in W1/O/W2 double emulsions and colorimetry technique using the CIE L*a*b* system was used to determine the release kinetics. Parameters a* and b* better correlated the variations in color of emulsions due to the release of AE into the external phase. Chroma value (C*) was used for tracking these color variations and to determine the release kinetics. The emulsions showed high stability, droplet sizes didn’t change after 30 days of storage (D4,3=4.74±0.12 μm), and 2.7 % AE was released to the external phase after this time. The possible release mechanism of AE from the internal phase of the emulsion is diffusion controlled with good accordance to Fick’s first law (R2=0.9938) with a diffusion coefficient of 7.15×10−8 cm2/d.


RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93894-93904 ◽  
Author(s):  
Jianming Pan ◽  
Jialu Luo ◽  
Jun Cao ◽  
Jinxing Liu ◽  
Wei Huang ◽  
...  

Hydrophilic urea-formaldehyde macroporous foams (UFMF) were simply synthesized by templating oil-in-water Pickering high internal phase emulsions (HIPEs) solely stabilized by lignin particles.


Sign in / Sign up

Export Citation Format

Share Document